| Step |
Hyp |
Ref |
Expression |
| 1 |
|
notnotb |
|
| 2 |
|
nfv |
|
| 3 |
|
nfv |
|
| 4 |
|
nfv |
|
| 5 |
|
nfv |
|
| 6 |
|
nfsbc1v |
|
| 7 |
4 5 6
|
nf3an |
|
| 8 |
|
nfv |
|
| 9 |
|
nfv |
|
| 10 |
|
nfcv |
|
| 11 |
|
nfsbc1v |
|
| 12 |
10 11
|
nfsbcw |
|
| 13 |
8 9 12
|
nf3an |
|
| 14 |
|
opeq12 |
|
| 15 |
14
|
eqeq2d |
|
| 16 |
|
simpl |
|
| 17 |
|
simpr |
|
| 18 |
16 17
|
neeq12d |
|
| 19 |
|
sbceq1a |
|
| 20 |
|
sbceq1a |
|
| 21 |
19 20
|
sylan9bbr |
|
| 22 |
15 18 21
|
3anbi123d |
|
| 23 |
2 3 7 13 22
|
cbvex2v |
|
| 24 |
|
vex |
|
| 25 |
|
vex |
|
| 26 |
24 25
|
opth |
|
| 27 |
|
eleq1w |
|
| 28 |
27
|
biimpcd |
|
| 29 |
28
|
adantl |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
com12 |
|
| 32 |
31
|
adantl |
|
| 33 |
26 32
|
sylbi |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
34
|
impcom |
|
| 36 |
|
eleq1w |
|
| 37 |
36
|
biimpcd |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
adantl |
|
| 40 |
39
|
com12 |
|
| 41 |
40
|
adantr |
|
| 42 |
26 41
|
sylbi |
|
| 43 |
42
|
3ad2ant1 |
|
| 44 |
43
|
impcom |
|
| 45 |
|
eqidd |
|
| 46 |
|
necom |
|
| 47 |
46
|
biimpi |
|
| 48 |
47
|
3ad2ant2 |
|
| 49 |
48
|
adantl |
|
| 50 |
|
dfich2 |
|
| 51 |
|
2sp |
|
| 52 |
|
sbsbc |
|
| 53 |
52
|
sbbii |
|
| 54 |
|
sbsbc |
|
| 55 |
53 54
|
bitri |
|
| 56 |
|
sbsbc |
|
| 57 |
56
|
sbbii |
|
| 58 |
|
sbsbc |
|
| 59 |
57 58
|
bitri |
|
| 60 |
51 55 59
|
3bitr3g |
|
| 61 |
60
|
biimpd |
|
| 62 |
50 61
|
sylbi |
|
| 63 |
62
|
adantr |
|
| 64 |
63
|
com12 |
|
| 65 |
64
|
3ad2ant3 |
|
| 66 |
65
|
impcom |
|
| 67 |
|
sbccom |
|
| 68 |
66 67
|
sylibr |
|
| 69 |
45 49 68
|
3jca |
|
| 70 |
|
nfv |
|
| 71 |
|
nfv |
|
| 72 |
|
nfsbc1v |
|
| 73 |
70 71 72
|
nf3an |
|
| 74 |
|
opeq2 |
|
| 75 |
74
|
eqeq2d |
|
| 76 |
|
neeq2 |
|
| 77 |
|
sbceq1a |
|
| 78 |
75 76 77
|
3anbi123d |
|
| 79 |
10 73 78
|
spcegf |
|
| 80 |
44 69 79
|
sylc |
|
| 81 |
|
nfcv |
|
| 82 |
|
nfv |
|
| 83 |
|
nfv |
|
| 84 |
|
nfsbc1v |
|
| 85 |
82 83 84
|
nf3an |
|
| 86 |
85
|
nfex |
|
| 87 |
|
opeq1 |
|
| 88 |
87
|
eqeq2d |
|
| 89 |
|
neeq1 |
|
| 90 |
|
sbceq1a |
|
| 91 |
88 89 90
|
3anbi123d |
|
| 92 |
91
|
exbidv |
|
| 93 |
81 86 92
|
spcegf |
|
| 94 |
35 80 93
|
sylc |
|
| 95 |
|
vex |
|
| 96 |
|
vex |
|
| 97 |
95 96
|
opth1 |
|
| 98 |
97
|
equcomd |
|
| 99 |
98
|
necon3ai |
|
| 100 |
99
|
adantl |
|
| 101 |
|
eqeq2 |
|
| 102 |
101
|
adantr |
|
| 103 |
100 102
|
mtbird |
|
| 104 |
103
|
3adant3 |
|
| 105 |
104
|
adantl |
|
| 106 |
94 105
|
jcnd |
|
| 107 |
|
opeq1 |
|
| 108 |
107
|
eqeq1d |
|
| 109 |
108
|
3anbi1d |
|
| 110 |
109
|
2exbidv |
|
| 111 |
107
|
eqeq1d |
|
| 112 |
110 111
|
imbi12d |
|
| 113 |
112
|
notbid |
|
| 114 |
|
opeq2 |
|
| 115 |
114
|
eqeq1d |
|
| 116 |
115
|
3anbi1d |
|
| 117 |
116
|
2exbidv |
|
| 118 |
114
|
eqeq1d |
|
| 119 |
117 118
|
imbi12d |
|
| 120 |
119
|
notbid |
|
| 121 |
113 120
|
rspc2ev |
|
| 122 |
35 44 106 121
|
syl3anc |
|
| 123 |
|
rexnal2 |
|
| 124 |
122 123
|
sylib |
|
| 125 |
124
|
ex |
|
| 126 |
125
|
exlimdvv |
|
| 127 |
23 126
|
biimtrid |
|
| 128 |
1 127
|
biimtrrid |
|
| 129 |
128
|
orrd |
|
| 130 |
|
ianor |
|
| 131 |
129 130
|
sylibr |
|
| 132 |
131
|
ralrimivva |
|
| 133 |
|
ralnex2 |
|
| 134 |
132 133
|
sylib |
|
| 135 |
|
eqeq1 |
|
| 136 |
135
|
3anbi1d |
|
| 137 |
136
|
2exbidv |
|
| 138 |
|
eqeq1 |
|
| 139 |
138
|
3anbi1d |
|
| 140 |
139
|
2exbidv |
|
| 141 |
137 140
|
reuop |
|
| 142 |
134 141
|
sylnibr |
|