| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|
| 2 |
1
|
anbi1d |
|
| 3 |
2
|
2exbidv |
|
| 4 |
|
eqeq1 |
|
| 5 |
4
|
anbi1d |
|
| 6 |
5
|
2exbidv |
|
| 7 |
3 6
|
reuop |
|
| 8 |
|
nfich1 |
|
| 9 |
|
nfv |
|
| 10 |
8 9
|
nfan |
|
| 11 |
|
nfcv |
|
| 12 |
|
nfe1 |
|
| 13 |
|
nfv |
|
| 14 |
12 13
|
nfim |
|
| 15 |
11 14
|
nfralw |
|
| 16 |
11 15
|
nfralw |
|
| 17 |
|
nfe1 |
|
| 18 |
16 17
|
nfim |
|
| 19 |
|
nfich2 |
|
| 20 |
|
nfv |
|
| 21 |
19 20
|
nfan |
|
| 22 |
|
nfcv |
|
| 23 |
|
nfe1 |
|
| 24 |
23
|
nfex |
|
| 25 |
|
nfv |
|
| 26 |
24 25
|
nfim |
|
| 27 |
22 26
|
nfralw |
|
| 28 |
22 27
|
nfralw |
|
| 29 |
|
nfe1 |
|
| 30 |
29
|
nfex |
|
| 31 |
28 30
|
nfim |
|
| 32 |
|
opeq12 |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
33
|
anbi1d |
|
| 35 |
34
|
2exbidv |
|
| 36 |
32
|
eqeq1d |
|
| 37 |
35 36
|
imbi12d |
|
| 38 |
37
|
rspc2gv |
|
| 39 |
38
|
ancoms |
|
| 40 |
39
|
adantl |
|
| 41 |
|
simprr |
|
| 42 |
41
|
adantr |
|
| 43 |
|
simpl |
|
| 44 |
43
|
adantl |
|
| 45 |
44
|
adantr |
|
| 46 |
|
eqidd |
|
| 47 |
|
vex |
|
| 48 |
|
vex |
|
| 49 |
47 48
|
opth |
|
| 50 |
|
sbceq1a |
|
| 51 |
50
|
equcoms |
|
| 52 |
|
sbceq1a |
|
| 53 |
52
|
equcoms |
|
| 54 |
51 53
|
sylan9bbr |
|
| 55 |
|
dfich2 |
|
| 56 |
|
2sp |
|
| 57 |
|
sbsbc |
|
| 58 |
57
|
sbbii |
|
| 59 |
|
sbsbc |
|
| 60 |
58 59
|
bitri |
|
| 61 |
|
sbsbc |
|
| 62 |
61
|
sbbii |
|
| 63 |
|
sbsbc |
|
| 64 |
62 63
|
bitri |
|
| 65 |
56 60 64
|
3bitr3g |
|
| 66 |
55 65
|
sylbi |
|
| 67 |
66
|
biimpd |
|
| 68 |
67
|
adantr |
|
| 69 |
68
|
com12 |
|
| 70 |
54 69
|
biimtrdi |
|
| 71 |
49 70
|
sylbi |
|
| 72 |
71
|
imp |
|
| 73 |
72
|
impcom |
|
| 74 |
|
sbccom |
|
| 75 |
73 74
|
sylibr |
|
| 76 |
46 75
|
jca |
|
| 77 |
|
nfcv |
|
| 78 |
|
nfv |
|
| 79 |
|
nfsbc1v |
|
| 80 |
78 79
|
nfan |
|
| 81 |
|
opeq2 |
|
| 82 |
81
|
eqeq2d |
|
| 83 |
|
sbceq1a |
|
| 84 |
82 83
|
anbi12d |
|
| 85 |
77 80 84
|
spcegf |
|
| 86 |
45 76 85
|
sylc |
|
| 87 |
|
nfcv |
|
| 88 |
|
nfv |
|
| 89 |
|
nfsbc1v |
|
| 90 |
88 89
|
nfan |
|
| 91 |
90
|
nfex |
|
| 92 |
|
opeq1 |
|
| 93 |
92
|
eqeq2d |
|
| 94 |
|
sbceq1a |
|
| 95 |
93 94
|
anbi12d |
|
| 96 |
95
|
exbidv |
|
| 97 |
87 91 96
|
spcegf |
|
| 98 |
42 86 97
|
sylc |
|
| 99 |
|
simpl |
|
| 100 |
|
simprr |
|
| 101 |
|
simpl |
|
| 102 |
101
|
adantl |
|
| 103 |
99 100 102
|
3eqtr3rd |
|
| 104 |
103
|
anim1i |
|
| 105 |
104
|
exp31 |
|
| 106 |
49 105
|
biimtrid |
|
| 107 |
106
|
impd |
|
| 108 |
48 47
|
opth1 |
|
| 109 |
107 108
|
syl11 |
|
| 110 |
109
|
adantl |
|
| 111 |
110
|
imp |
|
| 112 |
111
|
19.8ad |
|
| 113 |
112
|
19.8ad |
|
| 114 |
113
|
ex |
|
| 115 |
98 114
|
embantd |
|
| 116 |
115
|
ex |
|
| 117 |
40 116
|
syl5d |
|
| 118 |
21 31 117
|
exlimd |
|
| 119 |
10 18 118
|
exlimd |
|
| 120 |
119
|
impd |
|
| 121 |
120
|
rexlimdvva |
|
| 122 |
7 121
|
biimtrid |
|