Metamath Proof Explorer


Theorem ico0

Description: An empty open interval of extended reals. (Contributed by FL, 30-May-2014)

Ref Expression
Assertion ico0 A * B * A B = B A

Proof

Step Hyp Ref Expression
1 icoval A * B * A B = x * | A x x < B
2 1 eqeq1d A * B * A B = x * | A x x < B =
3 df-ne x * | A x x < B ¬ x * | A x x < B =
4 rabn0 x * | A x x < B x * A x x < B
5 3 4 bitr3i ¬ x * | A x x < B = x * A x x < B
6 xrlelttr A * x * B * A x x < B A < B
7 6 3com23 A * B * x * A x x < B A < B
8 7 3expa A * B * x * A x x < B A < B
9 8 rexlimdva A * B * x * A x x < B A < B
10 qbtwnxr A * B * A < B x A < x x < B
11 qre x x
12 11 rexrd x x *
13 12 a1i x * A * B * A < B x x *
14 simpr1 x * A * B * A < B A *
15 simpl x * A * B * A < B x *
16 xrltle A * x * A < x A x
17 14 15 16 syl2anc x * A * B * A < B A < x A x
18 17 anim1d x * A * B * A < B A < x x < B A x x < B
19 13 18 anim12d x * A * B * A < B x A < x x < B x * A x x < B
20 19 ex x * A * B * A < B x A < x x < B x * A x x < B
21 12 20 syl x A * B * A < B x A < x x < B x * A x x < B
22 21 adantr x A < x x < B A * B * A < B x A < x x < B x * A x x < B
23 22 pm2.43b A * B * A < B x A < x x < B x * A x x < B
24 23 reximdv2 A * B * A < B x A < x x < B x * A x x < B
25 10 24 mpd A * B * A < B x * A x x < B
26 25 3expia A * B * A < B x * A x x < B
27 9 26 impbid A * B * x * A x x < B A < B
28 5 27 syl5bb A * B * ¬ x * | A x x < B = A < B
29 xrltnle A * B * A < B ¬ B A
30 28 29 bitrd A * B * ¬ x * | A x x < B = ¬ B A
31 30 con4bid A * B * x * | A x x < B = B A
32 2 31 bitrd A * B * A B = B A