Metamath Proof Explorer


Theorem ico01fl0

Description: The floor of a real number in [ 0 , 1 ) is 0. Remark: may shorten the proof of modid or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019)

Ref Expression
Assertion ico01fl0 A 0 1 A = 0

Proof

Step Hyp Ref Expression
1 0re 0
2 1xr 1 *
3 icossre 0 1 * 0 1
4 1 2 3 mp2an 0 1
5 4 sseli A 0 1 A
6 0xr 0 *
7 elico1 0 * 1 * A 0 1 A * 0 A A < 1
8 6 2 7 mp2an A 0 1 A * 0 A A < 1
9 8 simp2bi A 0 1 0 A
10 8 simp3bi A 0 1 A < 1
11 recn A A
12 11 addid2d A 0 + A = A
13 12 fveqeq2d A 0 + A = 0 A = 0
14 0z 0
15 flbi2 0 A 0 + A = 0 0 A A < 1
16 14 15 mpan A 0 + A = 0 0 A A < 1
17 13 16 bitr3d A A = 0 0 A A < 1
18 17 biimpar A 0 A A < 1 A = 0
19 5 9 10 18 syl12anc A 0 1 A = 0