Step |
Hyp |
Ref |
Expression |
1 |
|
icocncflimc.a |
|
2 |
|
icocncflimc.b |
|
3 |
|
icocncflimc.altb |
|
4 |
|
icocncflimc.f |
|
5 |
1
|
rexrd |
|
6 |
1
|
leidd |
|
7 |
5 2 5 6 3
|
elicod |
|
8 |
4 7
|
cnlimci |
|
9 |
|
cncfrss |
|
10 |
4 9
|
syl |
|
11 |
|
ssid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
12 13 14
|
cncfcn |
|
16 |
10 11 15
|
sylancl |
|
17 |
4 16
|
eleqtrd |
|
18 |
12
|
cnfldtopon |
|
19 |
18
|
a1i |
|
20 |
|
resttopon |
|
21 |
19 10 20
|
syl2anc |
|
22 |
12
|
cnfldtop |
|
23 |
|
unicntop |
|
24 |
23
|
restid |
|
25 |
22 24
|
ax-mp |
|
26 |
25
|
cnfldtopon |
|
27 |
|
cncnp |
|
28 |
21 26 27
|
sylancl |
|
29 |
17 28
|
mpbid |
|
30 |
29
|
simpld |
|
31 |
|
ioossico |
|
32 |
31
|
a1i |
|
33 |
|
eqid |
|
34 |
1
|
recnd |
|
35 |
23
|
ntrtop |
|
36 |
22 35
|
ax-mp |
|
37 |
|
undif |
|
38 |
10 37
|
sylib |
|
39 |
38
|
eqcomd |
|
40 |
39
|
fveq2d |
|
41 |
36 40
|
eqtr3id |
|
42 |
34 41
|
eleqtrd |
|
43 |
42 7
|
elind |
|
44 |
22
|
a1i |
|
45 |
|
ssid |
|
46 |
45
|
a1i |
|
47 |
23 13
|
restntr |
|
48 |
44 10 46 47
|
syl3anc |
|
49 |
43 48
|
eleqtrrd |
|
50 |
7
|
snssd |
|
51 |
|
ssequn2 |
|
52 |
50 51
|
sylib |
|
53 |
52
|
eqcomd |
|
54 |
53
|
oveq2d |
|
55 |
54
|
fveq2d |
|
56 |
|
snunioo1 |
|
57 |
5 2 3 56
|
syl3anc |
|
58 |
57
|
eqcomd |
|
59 |
55 58
|
fveq12d |
|
60 |
49 59
|
eleqtrd |
|
61 |
30 32 10 12 33 60
|
limcres |
|
62 |
8 61
|
eleqtrrd |
|