Metamath Proof Explorer


Theorem icodiamlt

Description: Two elements in a half-open interval have separationstrictly less than the difference between the endpoints. (Contributed by Stefan O'Rear, 12-Sep-2014)

Ref Expression
Assertion icodiamlt A B C A B D A B C D < B A

Proof

Step Hyp Ref Expression
1 rexr B B *
2 elico2 A B * C A B C A C C < B
3 elico2 A B * D A B D A D D < B
4 2 3 anbi12d A B * C A B D A B C A C C < B D A D D < B
5 4 biimpd A B * C A B D A B C A C C < B D A D D < B
6 1 5 sylan2 A B C A B D A B C A C C < B D A D D < B
7 simplr A B C A C C < B D A D D < B B
8 7 recnd A B C A C C < B D A D D < B B
9 simpll A B C A C C < B D A D D < B A
10 9 recnd A B C A C C < B D A D D < B A
11 8 10 negsubdi2d A B C A C C < B D A D D < B B A = A B
12 9 7 resubcld A B C A C C < B D A D D < B A B
13 simprl1 A B C A C C < B D A D D < B C
14 13 7 resubcld A B C A C C < B D A D D < B C B
15 simprr1 A B C A C C < B D A D D < B D
16 13 15 resubcld A B C A C C < B D A D D < B C D
17 simprl2 A B C A C C < B D A D D < B A C
18 9 13 7 17 lesub1dd A B C A C C < B D A D D < B A B C B
19 simprr3 A B C A C C < B D A D D < B D < B
20 15 7 13 19 ltsub2dd A B C A C C < B D A D D < B C B < C D
21 12 14 16 18 20 lelttrd A B C A C C < B D A D D < B A B < C D
22 11 21 eqbrtrd A B C A C C < B D A D D < B B A < C D
23 7 15 resubcld A B C A C C < B D A D D < B B D
24 7 9 resubcld A B C A C C < B D A D D < B B A
25 simprl3 A B C A C C < B D A D D < B C < B
26 13 7 15 25 ltsub1dd A B C A C C < B D A D D < B C D < B D
27 simprr2 A B C A C C < B D A D D < B A D
28 9 15 7 27 lesub2dd A B C A C C < B D A D D < B B D B A
29 16 23 24 26 28 ltletrd A B C A C C < B D A D D < B C D < B A
30 16 24 absltd A B C A C C < B D A D D < B C D < B A B A < C D C D < B A
31 22 29 30 mpbir2and A B C A C C < B D A D D < B C D < B A
32 31 ex A B C A C C < B D A D D < B C D < B A
33 6 32 syld A B C A B D A B C D < B A
34 33 imp A B C A B D A B C D < B A