Step |
Hyp |
Ref |
Expression |
1 |
|
rexr |
|
2 |
|
elico2 |
|
3 |
|
elico2 |
|
4 |
2 3
|
anbi12d |
|
5 |
4
|
biimpd |
|
6 |
1 5
|
sylan2 |
|
7 |
|
simplr |
|
8 |
7
|
recnd |
|
9 |
|
simpll |
|
10 |
9
|
recnd |
|
11 |
8 10
|
negsubdi2d |
|
12 |
9 7
|
resubcld |
|
13 |
|
simprl1 |
|
14 |
13 7
|
resubcld |
|
15 |
|
simprr1 |
|
16 |
13 15
|
resubcld |
|
17 |
|
simprl2 |
|
18 |
9 13 7 17
|
lesub1dd |
|
19 |
|
simprr3 |
|
20 |
15 7 13 19
|
ltsub2dd |
|
21 |
12 14 16 18 20
|
lelttrd |
|
22 |
11 21
|
eqbrtrd |
|
23 |
7 15
|
resubcld |
|
24 |
7 9
|
resubcld |
|
25 |
|
simprl3 |
|
26 |
13 7 15 25
|
ltsub1dd |
|
27 |
|
simprr2 |
|
28 |
9 15 7 27
|
lesub2dd |
|
29 |
16 23 24 26 28
|
ltletrd |
|
30 |
16 24
|
absltd |
|
31 |
22 29 30
|
mpbir2and |
|
32 |
31
|
ex |
|
33 |
6 32
|
syld |
|
34 |
33
|
imp |
|