Metamath Proof Explorer


Theorem icodisj

Description: Adjacent left-closed right-open real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion icodisj A * B * C * A B B C =

Proof

Step Hyp Ref Expression
1 elin x A B B C x A B x B C
2 elico1 A * B * x A B x * A x x < B
3 2 3adant3 A * B * C * x A B x * A x x < B
4 3 biimpa A * B * C * x A B x * A x x < B
5 4 simp3d A * B * C * x A B x < B
6 5 adantrr A * B * C * x A B x B C x < B
7 elico1 B * C * x B C x * B x x < C
8 7 3adant1 A * B * C * x B C x * B x x < C
9 8 biimpa A * B * C * x B C x * B x x < C
10 9 simp2d A * B * C * x B C B x
11 simpl2 A * B * C * x B C B *
12 9 simp1d A * B * C * x B C x *
13 11 12 xrlenltd A * B * C * x B C B x ¬ x < B
14 10 13 mpbid A * B * C * x B C ¬ x < B
15 14 adantrl A * B * C * x A B x B C ¬ x < B
16 6 15 pm2.65da A * B * C * ¬ x A B x B C
17 16 pm2.21d A * B * C * x A B x B C x
18 1 17 syl5bi A * B * C * x A B B C x
19 18 ssrdv A * B * C * A B B C
20 ss0 A B B C A B B C =
21 19 20 syl A * B * C * A B B C =