Metamath Proof Explorer


Theorem icof

Description: The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion icof . : * × * 𝒫 *

Proof

Step Hyp Ref Expression
1 eqidd x * y * z * | x z z < y = z * | x z z < y
2 ssrab2 z * | x z z < y *
3 xrex * V
4 3 rabex z * | x z z < y V
5 4 elpw z * | x z z < y 𝒫 * z * | x z z < y *
6 2 5 mpbir z * | x z z < y 𝒫 *
7 1 6 eqeltrrdi x * y * z * | x z z < y 𝒫 *
8 7 rgen2 x * y * z * | x z z < y 𝒫 *
9 df-ico . = x * , y * z * | x z z < y
10 9 fmpo x * y * z * | x z z < y 𝒫 * . : * × * 𝒫 *
11 8 10 mpbi . : * × * 𝒫 *