Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
|
2 |
|
rexr |
|
3 |
2
|
ad2antrr |
|
4 |
|
simplr |
|
5 |
|
pnfxr |
|
6 |
5
|
a1i |
|
7 |
|
xrltle |
|
8 |
2 7
|
sylan |
|
9 |
8
|
imp |
|
10 |
|
pnfge |
|
11 |
4 10
|
syl |
|
12 |
|
icoun |
|
13 |
3 4 6 9 11 12
|
syl32anc |
|
14 |
1 13
|
eqtrid |
|
15 |
|
ssun1 |
|
16 |
15 14
|
sseqtrid |
|
17 |
|
incom |
|
18 |
|
icodisj |
|
19 |
5 18
|
mp3an3 |
|
20 |
3 4 19
|
syl2anc |
|
21 |
17 20
|
eqtrid |
|
22 |
|
uneqdifeq |
|
23 |
16 21 22
|
syl2anc |
|
24 |
14 23
|
mpbid |
|
25 |
|
icombl1 |
|
26 |
25
|
ad2antrr |
|
27 |
|
xrleloe |
|
28 |
4 6 27
|
syl2anc |
|
29 |
11 28
|
mpbid |
|
30 |
|
simpr |
|
31 |
|
xrre2 |
|
32 |
31
|
expr |
|
33 |
3 4 6 30 32
|
syl31anc |
|
34 |
33
|
orim1d |
|
35 |
29 34
|
mpd |
|
36 |
|
icombl1 |
|
37 |
|
oveq1 |
|
38 |
|
pnfge |
|
39 |
5 38
|
ax-mp |
|
40 |
|
ico0 |
|
41 |
5 5 40
|
mp2an |
|
42 |
39 41
|
mpbir |
|
43 |
37 42
|
eqtrdi |
|
44 |
|
0mbl |
|
45 |
43 44
|
eqeltrdi |
|
46 |
36 45
|
jaoi |
|
47 |
35 46
|
syl |
|
48 |
|
difmbl |
|
49 |
26 47 48
|
syl2anc |
|
50 |
24 49
|
eqeltrrd |
|
51 |
|
ico0 |
|
52 |
2 51
|
sylan |
|
53 |
|
simpr |
|
54 |
2
|
adantr |
|
55 |
53 54
|
xrlenltd |
|
56 |
52 55
|
bitrd |
|
57 |
56
|
biimpar |
|
58 |
57 44
|
eqeltrdi |
|
59 |
50 58
|
pm2.61dan |
|