Metamath Proof Explorer


Theorem icombl1

Description: A closed unbounded-above interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion icombl1 A A +∞ dom vol

Proof

Step Hyp Ref Expression
1 rexr A A *
2 pnfxr +∞ *
3 2 a1i A +∞ *
4 ltpnf A A < +∞
5 snunioo A * +∞ * A < +∞ A A +∞ = A +∞
6 1 3 4 5 syl3anc A A A +∞ = A +∞
7 snssi A A
8 ovolsn A vol * A = 0
9 nulmbl A vol * A = 0 A dom vol
10 7 8 9 syl2anc A A dom vol
11 ioombl1 A * A +∞ dom vol
12 1 11 syl A A +∞ dom vol
13 unmbl A dom vol A +∞ dom vol A A +∞ dom vol
14 10 12 13 syl2anc A A A +∞ dom vol
15 6 14 eqeltrrd A A +∞ dom vol