Metamath Proof Explorer


Theorem icoopnst

Description: A half-open interval starting at A is open in the closed interval from A to B . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypothesis icoopnst.1 J = MetOpen abs A B × A B
Assertion icoopnst A B C A B A C J

Proof

Step Hyp Ref Expression
1 icoopnst.1 J = MetOpen abs A B × A B
2 iooretop A 1 C topGen ran .
3 simp1 v A v v < C v
4 3 a1i A B C A B v A v v < C v
5 ltm1 A A 1 < A
6 5 adantr A v A 1 < A
7 peano2rem A A 1
8 7 adantr A v A 1
9 ltletr A 1 A v A 1 < A A v A 1 < v
10 9 3expb A 1 A v A 1 < A A v A 1 < v
11 8 10 mpancom A v A 1 < A A v A 1 < v
12 6 11 mpand A v A v A 1 < v
13 12 impr A v A v A 1 < v
14 13 3adantr3 A v A v v < C A 1 < v
15 14 ex A v A v v < C A 1 < v
16 15 ad2antrr A B C A B v A v v < C A 1 < v
17 simp3 v A v v < C v < C
18 17 a1i A B C A B v A v v < C v < C
19 4 16 18 3jcad A B C A B v A v v < C v A 1 < v v < C
20 simp2 v A v v < C A v
21 20 a1i A B C A B v A v v < C A v
22 rexr A A *
23 elioc2 A * B C A B C A < C C B
24 22 23 sylan A B C A B C A < C C B
25 24 biimpa A B C A B C A < C C B
26 ltleletr v C B v < C C B v B
27 26 3expa v C B v < C C B v B
28 27 an31s B C v v < C C B v B
29 28 imp B C v v < C C B v B
30 29 ancom2s B C v C B v < C v B
31 30 an4s B C C B v v < C v B
32 31 3adantr2 B C C B v A v v < C v B
33 32 ex B C C B v A v v < C v B
34 33 anasss B C C B v A v v < C v B
35 34 3adantr2 B C A < C C B v A v v < C v B
36 35 adantll A B C A < C C B v A v v < C v B
37 25 36 syldan A B C A B v A v v < C v B
38 4 21 37 3jcad A B C A B v A v v < C v A v v B
39 19 38 jcad A B C A B v A v v < C v A 1 < v v < C v A v v B
40 simpl1 v A 1 < v v < C v A v v B v
41 simpr2 v A 1 < v v < C v A v v B A v
42 simpl3 v A 1 < v v < C v A v v B v < C
43 40 41 42 3jca v A 1 < v v < C v A v v B v A v v < C
44 39 43 impbid1 A B C A B v A v v < C v A 1 < v v < C v A v v B
45 simpll A B C A B A
46 25 simp1d A B C A B C
47 46 rexrd A B C A B C *
48 elico2 A C * v A C v A v v < C
49 45 47 48 syl2anc A B C A B v A C v A v v < C
50 elin v A 1 C A B v A 1 C v A B
51 7 rexrd A A 1 *
52 51 ad2antrr A B C A B A 1 *
53 elioo2 A 1 * C * v A 1 C v A 1 < v v < C
54 52 47 53 syl2anc A B C A B v A 1 C v A 1 < v v < C
55 elicc2 A B v A B v A v v B
56 55 adantr A B C A B v A B v A v v B
57 54 56 anbi12d A B C A B v A 1 C v A B v A 1 < v v < C v A v v B
58 50 57 syl5bb A B C A B v A 1 C A B v A 1 < v v < C v A v v B
59 44 49 58 3bitr4d A B C A B v A C v A 1 C A B
60 59 eqrdv A B C A B A C = A 1 C A B
61 ineq1 v = A 1 C v A B = A 1 C A B
62 61 rspceeqv A 1 C topGen ran . A C = A 1 C A B v topGen ran . A C = v A B
63 2 60 62 sylancr A B C A B v topGen ran . A C = v A B
64 retop topGen ran . Top
65 ovex A B V
66 elrest topGen ran . Top A B V A C topGen ran . 𝑡 A B v topGen ran . A C = v A B
67 64 65 66 mp2an A C topGen ran . 𝑡 A B v topGen ran . A C = v A B
68 63 67 sylibr A B C A B A C topGen ran . 𝑡 A B
69 iccssre A B A B
70 69 adantr A B C A B A B
71 eqid topGen ran . = topGen ran .
72 71 1 resubmet A B J = topGen ran . 𝑡 A B
73 70 72 syl A B C A B J = topGen ran . 𝑡 A B
74 68 73 eleqtrrd A B C A B A C J
75 74 ex A B C A B A C J