Step |
Hyp |
Ref |
Expression |
1 |
|
icoopnst.1 |
|
2 |
|
iooretop |
|
3 |
|
simp1 |
|
4 |
3
|
a1i |
|
5 |
|
ltm1 |
|
6 |
5
|
adantr |
|
7 |
|
peano2rem |
|
8 |
7
|
adantr |
|
9 |
|
ltletr |
|
10 |
9
|
3expb |
|
11 |
8 10
|
mpancom |
|
12 |
6 11
|
mpand |
|
13 |
12
|
impr |
|
14 |
13
|
3adantr3 |
|
15 |
14
|
ex |
|
16 |
15
|
ad2antrr |
|
17 |
|
simp3 |
|
18 |
17
|
a1i |
|
19 |
4 16 18
|
3jcad |
|
20 |
|
simp2 |
|
21 |
20
|
a1i |
|
22 |
|
rexr |
|
23 |
|
elioc2 |
|
24 |
22 23
|
sylan |
|
25 |
24
|
biimpa |
|
26 |
|
ltleletr |
|
27 |
26
|
3expa |
|
28 |
27
|
an31s |
|
29 |
28
|
imp |
|
30 |
29
|
ancom2s |
|
31 |
30
|
an4s |
|
32 |
31
|
3adantr2 |
|
33 |
32
|
ex |
|
34 |
33
|
anasss |
|
35 |
34
|
3adantr2 |
|
36 |
35
|
adantll |
|
37 |
25 36
|
syldan |
|
38 |
4 21 37
|
3jcad |
|
39 |
19 38
|
jcad |
|
40 |
|
simpl1 |
|
41 |
|
simpr2 |
|
42 |
|
simpl3 |
|
43 |
40 41 42
|
3jca |
|
44 |
39 43
|
impbid1 |
|
45 |
|
simpll |
|
46 |
25
|
simp1d |
|
47 |
46
|
rexrd |
|
48 |
|
elico2 |
|
49 |
45 47 48
|
syl2anc |
|
50 |
|
elin |
|
51 |
7
|
rexrd |
|
52 |
51
|
ad2antrr |
|
53 |
|
elioo2 |
|
54 |
52 47 53
|
syl2anc |
|
55 |
|
elicc2 |
|
56 |
55
|
adantr |
|
57 |
54 56
|
anbi12d |
|
58 |
50 57
|
syl5bb |
|
59 |
44 49 58
|
3bitr4d |
|
60 |
59
|
eqrdv |
|
61 |
|
ineq1 |
|
62 |
61
|
rspceeqv |
|
63 |
2 60 62
|
sylancr |
|
64 |
|
retop |
|
65 |
|
ovex |
|
66 |
|
elrest |
|
67 |
64 65 66
|
mp2an |
|
68 |
63 67
|
sylibr |
|
69 |
|
iccssre |
|
70 |
69
|
adantr |
|
71 |
|
eqid |
|
72 |
71 1
|
resubmet |
|
73 |
70 72
|
syl |
|
74 |
68 73
|
eleqtrrd |
|
75 |
74
|
ex |
|