Step |
Hyp |
Ref |
Expression |
1 |
|
icopnfhmeo.f |
|
2 |
|
0re |
|
3 |
|
1xr |
|
4 |
|
elico2 |
|
5 |
2 3 4
|
mp2an |
|
6 |
5
|
simp1bi |
|
7 |
5
|
simp3bi |
|
8 |
|
1re |
|
9 |
|
difrp |
|
10 |
6 8 9
|
sylancl |
|
11 |
7 10
|
mpbid |
|
12 |
6 11
|
rerpdivcld |
|
13 |
5
|
simp2bi |
|
14 |
6 11 13
|
divge0d |
|
15 |
|
elrege0 |
|
16 |
12 14 15
|
sylanbrc |
|
17 |
16
|
adantl |
|
18 |
|
elrege0 |
|
19 |
18
|
simplbi |
|
20 |
|
readdcl |
|
21 |
8 19 20
|
sylancr |
|
22 |
2
|
a1i |
|
23 |
18
|
simprbi |
|
24 |
19
|
ltp1d |
|
25 |
|
ax-1cn |
|
26 |
19
|
recnd |
|
27 |
|
addcom |
|
28 |
25 26 27
|
sylancr |
|
29 |
24 28
|
breqtrrd |
|
30 |
22 19 21 23 29
|
lelttrd |
|
31 |
21 30
|
elrpd |
|
32 |
19 31
|
rerpdivcld |
|
33 |
|
divge0 |
|
34 |
19 23 21 30 33
|
syl22anc |
|
35 |
21
|
recnd |
|
36 |
35
|
mulid1d |
|
37 |
29 36
|
breqtrrd |
|
38 |
8
|
a1i |
|
39 |
|
ltdivmul |
|
40 |
19 38 21 30 39
|
syl112anc |
|
41 |
37 40
|
mpbird |
|
42 |
|
elico2 |
|
43 |
2 3 42
|
mp2an |
|
44 |
32 34 41 43
|
syl3anbrc |
|
45 |
44
|
adantl |
|
46 |
26
|
adantl |
|
47 |
6
|
adantr |
|
48 |
47
|
recnd |
|
49 |
48 46
|
mulcld |
|
50 |
46 49 48
|
subadd2d |
|
51 |
|
1cnd |
|
52 |
51 48 46
|
subdird |
|
53 |
46
|
mulid2d |
|
54 |
53
|
oveq1d |
|
55 |
52 54
|
eqtrd |
|
56 |
55
|
eqeq1d |
|
57 |
48 51 46
|
adddid |
|
58 |
48
|
mulid1d |
|
59 |
58
|
oveq1d |
|
60 |
57 59
|
eqtrd |
|
61 |
60
|
eqeq1d |
|
62 |
50 56 61
|
3bitr4rd |
|
63 |
|
eqcom |
|
64 |
|
eqcom |
|
65 |
62 63 64
|
3bitr4g |
|
66 |
35
|
adantl |
|
67 |
31
|
adantl |
|
68 |
67
|
rpne0d |
|
69 |
46 48 66 68
|
divmul3d |
|
70 |
11
|
adantr |
|
71 |
70
|
rpcnd |
|
72 |
70
|
rpne0d |
|
73 |
48 46 71 72
|
divmul2d |
|
74 |
65 69 73
|
3bitr4d |
|
75 |
|
eqcom |
|
76 |
|
eqcom |
|
77 |
74 75 76
|
3bitr4g |
|
78 |
77
|
adantl |
|
79 |
1 17 45 78
|
f1ocnv2d |
|
80 |
79
|
mptru |
|