Metamath Proof Explorer


Theorem icopnfhmeo

Description: The defined bijection from [ 0 , 1 ) to [ 0 , +oo ) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses icopnfhmeo.f F = x 0 1 x 1 x
icopnfhmeo.j J = TopOpen fld
Assertion icopnfhmeo F Isom < , < 0 1 0 +∞ F J 𝑡 0 1 Homeo J 𝑡 0 +∞

Proof

Step Hyp Ref Expression
1 icopnfhmeo.f F = x 0 1 x 1 x
2 icopnfhmeo.j J = TopOpen fld
3 1 icopnfcnv F : 0 1 1-1 onto 0 +∞ F -1 = y 0 +∞ y 1 + y
4 3 simpli F : 0 1 1-1 onto 0 +∞
5 0re 0
6 1xr 1 *
7 elico2 0 1 * x 0 1 x 0 x x < 1
8 5 6 7 mp2an x 0 1 x 0 x x < 1
9 8 simp1bi x 0 1 x
10 9 ssriv 0 1
11 10 sseli z 0 1 z
12 11 adantr z 0 1 w 0 1 z
13 elico2 0 1 * w 0 1 w 0 w w < 1
14 5 6 13 mp2an w 0 1 w 0 w w < 1
15 14 simp3bi w 0 1 w < 1
16 10 sseli w 0 1 w
17 1re 1
18 difrp w 1 w < 1 1 w +
19 16 17 18 sylancl w 0 1 w < 1 1 w +
20 15 19 mpbid w 0 1 1 w +
21 20 rpregt0d w 0 1 1 w 0 < 1 w
22 21 adantl z 0 1 w 0 1 1 w 0 < 1 w
23 16 adantl z 0 1 w 0 1 w
24 elico2 0 1 * z 0 1 z 0 z z < 1
25 5 6 24 mp2an z 0 1 z 0 z z < 1
26 25 simp3bi z 0 1 z < 1
27 difrp z 1 z < 1 1 z +
28 11 17 27 sylancl z 0 1 z < 1 1 z +
29 26 28 mpbid z 0 1 1 z +
30 29 adantr z 0 1 w 0 1 1 z +
31 30 rpregt0d z 0 1 w 0 1 1 z 0 < 1 z
32 lt2mul2div z 1 w 0 < 1 w w 1 z 0 < 1 z z 1 w < w 1 z z 1 z < w 1 w
33 12 22 23 31 32 syl22anc z 0 1 w 0 1 z 1 w < w 1 z z 1 z < w 1 w
34 12 23 remulcld z 0 1 w 0 1 z w
35 12 23 34 ltsub1d z 0 1 w 0 1 z < w z z w < w z w
36 12 recnd z 0 1 w 0 1 z
37 1cnd z 0 1 w 0 1 1
38 23 recnd z 0 1 w 0 1 w
39 36 37 38 subdid z 0 1 w 0 1 z 1 w = z 1 z w
40 36 mulid1d z 0 1 w 0 1 z 1 = z
41 40 oveq1d z 0 1 w 0 1 z 1 z w = z z w
42 39 41 eqtrd z 0 1 w 0 1 z 1 w = z z w
43 38 37 36 subdid z 0 1 w 0 1 w 1 z = w 1 w z
44 38 mulid1d z 0 1 w 0 1 w 1 = w
45 38 36 mulcomd z 0 1 w 0 1 w z = z w
46 44 45 oveq12d z 0 1 w 0 1 w 1 w z = w z w
47 43 46 eqtrd z 0 1 w 0 1 w 1 z = w z w
48 42 47 breq12d z 0 1 w 0 1 z 1 w < w 1 z z z w < w z w
49 35 48 bitr4d z 0 1 w 0 1 z < w z 1 w < w 1 z
50 id x = z x = z
51 oveq2 x = z 1 x = 1 z
52 50 51 oveq12d x = z x 1 x = z 1 z
53 ovex z 1 z V
54 52 1 53 fvmpt z 0 1 F z = z 1 z
55 id x = w x = w
56 oveq2 x = w 1 x = 1 w
57 55 56 oveq12d x = w x 1 x = w 1 w
58 ovex w 1 w V
59 57 1 58 fvmpt w 0 1 F w = w 1 w
60 54 59 breqan12d z 0 1 w 0 1 F z < F w z 1 z < w 1 w
61 33 49 60 3bitr4d z 0 1 w 0 1 z < w F z < F w
62 61 rgen2 z 0 1 w 0 1 z < w F z < F w
63 df-isom F Isom < , < 0 1 0 +∞ F : 0 1 1-1 onto 0 +∞ z 0 1 w 0 1 z < w F z < F w
64 4 62 63 mpbir2an F Isom < , < 0 1 0 +∞
65 letsr TosetRel
66 65 elexi V
67 66 inex1 0 1 × 0 1 V
68 66 inex1 0 +∞ × 0 +∞ V
69 icossxr 0 1 *
70 icossxr 0 +∞ *
71 leiso 0 1 * 0 +∞ * F Isom < , < 0 1 0 +∞ F Isom , 0 1 0 +∞
72 69 70 71 mp2an F Isom < , < 0 1 0 +∞ F Isom , 0 1 0 +∞
73 64 72 mpbi F Isom , 0 1 0 +∞
74 isores1 F Isom , 0 1 0 +∞ F Isom 0 1 × 0 1 , 0 1 0 +∞
75 73 74 mpbi F Isom 0 1 × 0 1 , 0 1 0 +∞
76 isores2 F Isom 0 1 × 0 1 , 0 1 0 +∞ F Isom 0 1 × 0 1 , 0 +∞ × 0 +∞ 0 1 0 +∞
77 75 76 mpbi F Isom 0 1 × 0 1 , 0 +∞ × 0 +∞ 0 1 0 +∞
78 tsrps TosetRel PosetRel
79 65 78 ax-mp PosetRel
80 ledm * = dom
81 80 psssdm PosetRel 0 1 * dom 0 1 × 0 1 = 0 1
82 79 69 81 mp2an dom 0 1 × 0 1 = 0 1
83 82 eqcomi 0 1 = dom 0 1 × 0 1
84 80 psssdm PosetRel 0 +∞ * dom 0 +∞ × 0 +∞ = 0 +∞
85 79 70 84 mp2an dom 0 +∞ × 0 +∞ = 0 +∞
86 85 eqcomi 0 +∞ = dom 0 +∞ × 0 +∞
87 83 86 ordthmeo 0 1 × 0 1 V 0 +∞ × 0 +∞ V F Isom 0 1 × 0 1 , 0 +∞ × 0 +∞ 0 1 0 +∞ F ordTop 0 1 × 0 1 Homeo ordTop 0 +∞ × 0 +∞
88 67 68 77 87 mp3an F ordTop 0 1 × 0 1 Homeo ordTop 0 +∞ × 0 +∞
89 eqid ordTop = ordTop
90 2 89 xrrest2 0 1 J 𝑡 0 1 = ordTop 𝑡 0 1
91 10 90 ax-mp J 𝑡 0 1 = ordTop 𝑡 0 1
92 iccssico2 x 0 1 y 0 1 x y 0 1
93 69 92 ordtrestixx ordTop 𝑡 0 1 = ordTop 0 1 × 0 1
94 91 93 eqtri J 𝑡 0 1 = ordTop 0 1 × 0 1
95 rge0ssre 0 +∞
96 2 89 xrrest2 0 +∞ J 𝑡 0 +∞ = ordTop 𝑡 0 +∞
97 95 96 ax-mp J 𝑡 0 +∞ = ordTop 𝑡 0 +∞
98 iccssico2 x 0 +∞ y 0 +∞ x y 0 +∞
99 70 98 ordtrestixx ordTop 𝑡 0 +∞ = ordTop 0 +∞ × 0 +∞
100 97 99 eqtri J 𝑡 0 +∞ = ordTop 0 +∞ × 0 +∞
101 94 100 oveq12i J 𝑡 0 1 Homeo J 𝑡 0 +∞ = ordTop 0 1 × 0 1 Homeo ordTop 0 +∞ × 0 +∞
102 88 101 eleqtrri F J 𝑡 0 1 Homeo J 𝑡 0 +∞
103 64 102 pm3.2i F Isom < , < 0 1 0 +∞ F J 𝑡 0 1 Homeo J 𝑡 0 +∞