Metamath Proof Explorer


Theorem icoshft

Description: A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008)

Ref Expression
Assertion icoshft A B C X A B X + C A + C B + C

Proof

Step Hyp Ref Expression
1 rexr B B *
2 elico2 A B * X A B X A X X < B
3 1 2 sylan2 A B X A B X A X X < B
4 3 biimpd A B X A B X A X X < B
5 4 3adant3 A B C X A B X A X X < B
6 3anass X A X X < B X A X X < B
7 5 6 syl6ib A B C X A B X A X X < B
8 leadd1 A X C A X A + C X + C
9 8 3com12 X A C A X A + C X + C
10 9 3expib X A C A X A + C X + C
11 10 com12 A C X A X A + C X + C
12 11 3adant2 A B C X A X A + C X + C
13 12 imp A B C X A X A + C X + C
14 ltadd1 X B C X < B X + C < B + C
15 14 3expib X B C X < B X + C < B + C
16 15 com12 B C X X < B X + C < B + C
17 16 3adant1 A B C X X < B X + C < B + C
18 17 imp A B C X X < B X + C < B + C
19 13 18 anbi12d A B C X A X X < B A + C X + C X + C < B + C
20 19 pm5.32da A B C X A X X < B X A + C X + C X + C < B + C
21 readdcl X C X + C
22 21 expcom C X X + C
23 22 anim1d C X A + C X + C X + C < B + C X + C A + C X + C X + C < B + C
24 3anass X + C A + C X + C X + C < B + C X + C A + C X + C X + C < B + C
25 23 24 syl6ibr C X A + C X + C X + C < B + C X + C A + C X + C X + C < B + C
26 25 3ad2ant3 A B C X A + C X + C X + C < B + C X + C A + C X + C X + C < B + C
27 readdcl A C A + C
28 27 3adant2 A B C A + C
29 readdcl B C B + C
30 29 3adant1 A B C B + C
31 rexr B + C B + C *
32 elico2 A + C B + C * X + C A + C B + C X + C A + C X + C X + C < B + C
33 31 32 sylan2 A + C B + C X + C A + C B + C X + C A + C X + C X + C < B + C
34 33 biimprd A + C B + C X + C A + C X + C X + C < B + C X + C A + C B + C
35 28 30 34 syl2anc A B C X + C A + C X + C X + C < B + C X + C A + C B + C
36 26 35 syld A B C X A + C X + C X + C < B + C X + C A + C B + C
37 20 36 sylbid A B C X A X X < B X + C A + C B + C
38 7 37 syld A B C X A B X + C A + C B + C