Step |
Hyp |
Ref |
Expression |
1 |
|
icoshftf1o.1 |
|
2 |
|
icoshft |
|
3 |
2
|
ralrimiv |
|
4 |
|
readdcl |
|
5 |
4
|
3adant2 |
|
6 |
|
readdcl |
|
7 |
6
|
3adant1 |
|
8 |
|
renegcl |
|
9 |
8
|
3ad2ant3 |
|
10 |
|
icoshft |
|
11 |
5 7 9 10
|
syl3anc |
|
12 |
11
|
imp |
|
13 |
7
|
rexrd |
|
14 |
|
icossre |
|
15 |
5 13 14
|
syl2anc |
|
16 |
15
|
sselda |
|
17 |
16
|
recnd |
|
18 |
|
simpl3 |
|
19 |
18
|
recnd |
|
20 |
17 19
|
negsubd |
|
21 |
5
|
recnd |
|
22 |
|
simp3 |
|
23 |
22
|
recnd |
|
24 |
21 23
|
negsubd |
|
25 |
|
simp1 |
|
26 |
25
|
recnd |
|
27 |
26 23
|
pncand |
|
28 |
24 27
|
eqtrd |
|
29 |
7
|
recnd |
|
30 |
29 23
|
negsubd |
|
31 |
|
simp2 |
|
32 |
31
|
recnd |
|
33 |
32 23
|
pncand |
|
34 |
30 33
|
eqtrd |
|
35 |
28 34
|
oveq12d |
|
36 |
35
|
adantr |
|
37 |
12 20 36
|
3eltr3d |
|
38 |
|
reueq |
|
39 |
37 38
|
sylib |
|
40 |
16
|
adantr |
|
41 |
40
|
recnd |
|
42 |
|
simpll3 |
|
43 |
42
|
recnd |
|
44 |
|
simpl1 |
|
45 |
|
simpl2 |
|
46 |
45
|
rexrd |
|
47 |
|
icossre |
|
48 |
44 46 47
|
syl2anc |
|
49 |
48
|
sselda |
|
50 |
49
|
recnd |
|
51 |
41 43 50
|
subadd2d |
|
52 |
|
eqcom |
|
53 |
|
eqcom |
|
54 |
51 52 53
|
3bitr4g |
|
55 |
54
|
reubidva |
|
56 |
39 55
|
mpbid |
|
57 |
56
|
ralrimiva |
|
58 |
1
|
f1ompt |
|
59 |
3 57 58
|
sylanbrc |
|