Metamath Proof Explorer


Theorem icoshftf1o

Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008) (Proof shortened by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypothesis icoshftf1o.1 F = x A B x + C
Assertion icoshftf1o A B C F : A B 1-1 onto A + C B + C

Proof

Step Hyp Ref Expression
1 icoshftf1o.1 F = x A B x + C
2 icoshft A B C x A B x + C A + C B + C
3 2 ralrimiv A B C x A B x + C A + C B + C
4 readdcl A C A + C
5 4 3adant2 A B C A + C
6 readdcl B C B + C
7 6 3adant1 A B C B + C
8 renegcl C C
9 8 3ad2ant3 A B C C
10 icoshft A + C B + C C y A + C B + C y + C A + C + C B + C + C
11 5 7 9 10 syl3anc A B C y A + C B + C y + C A + C + C B + C + C
12 11 imp A B C y A + C B + C y + C A + C + C B + C + C
13 7 rexrd A B C B + C *
14 icossre A + C B + C * A + C B + C
15 5 13 14 syl2anc A B C A + C B + C
16 15 sselda A B C y A + C B + C y
17 16 recnd A B C y A + C B + C y
18 simpl3 A B C y A + C B + C C
19 18 recnd A B C y A + C B + C C
20 17 19 negsubd A B C y A + C B + C y + C = y C
21 5 recnd A B C A + C
22 simp3 A B C C
23 22 recnd A B C C
24 21 23 negsubd A B C A + C + C = A + C - C
25 simp1 A B C A
26 25 recnd A B C A
27 26 23 pncand A B C A + C - C = A
28 24 27 eqtrd A B C A + C + C = A
29 7 recnd A B C B + C
30 29 23 negsubd A B C B + C + C = B + C - C
31 simp2 A B C B
32 31 recnd A B C B
33 32 23 pncand A B C B + C - C = B
34 30 33 eqtrd A B C B + C + C = B
35 28 34 oveq12d A B C A + C + C B + C + C = A B
36 35 adantr A B C y A + C B + C A + C + C B + C + C = A B
37 12 20 36 3eltr3d A B C y A + C B + C y C A B
38 reueq y C A B ∃! x A B x = y C
39 37 38 sylib A B C y A + C B + C ∃! x A B x = y C
40 16 adantr A B C y A + C B + C x A B y
41 40 recnd A B C y A + C B + C x A B y
42 simpll3 A B C y A + C B + C x A B C
43 42 recnd A B C y A + C B + C x A B C
44 simpl1 A B C y A + C B + C A
45 simpl2 A B C y A + C B + C B
46 45 rexrd A B C y A + C B + C B *
47 icossre A B * A B
48 44 46 47 syl2anc A B C y A + C B + C A B
49 48 sselda A B C y A + C B + C x A B x
50 49 recnd A B C y A + C B + C x A B x
51 41 43 50 subadd2d A B C y A + C B + C x A B y C = x x + C = y
52 eqcom x = y C y C = x
53 eqcom y = x + C x + C = y
54 51 52 53 3bitr4g A B C y A + C B + C x A B x = y C y = x + C
55 54 reubidva A B C y A + C B + C ∃! x A B x = y C ∃! x A B y = x + C
56 39 55 mpbid A B C y A + C B + C ∃! x A B y = x + C
57 56 ralrimiva A B C y A + C B + C ∃! x A B y = x + C
58 1 f1ompt F : A B 1-1 onto A + C B + C x A B x + C A + C B + C y A + C B + C ∃! x A B y = x + C
59 3 57 58 sylanbrc A B C F : A B 1-1 onto A + C B + C