Metamath Proof Explorer


Theorem icossico

Description: Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Thierry Arnoux, 21-Sep-2017)

Ref Expression
Assertion icossico A * B * A C D B C D A B

Proof

Step Hyp Ref Expression
1 df-ico . = x * , y * z * | x z z < y
2 xrletr A * C * w * A C C w A w
3 xrltletr w * D * B * w < D D B w < B
4 1 1 2 3 ixxss12 A * B * A C D B C D A B