Metamath Proof Explorer


Theorem icossioo

Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017)

Ref Expression
Assertion icossioo A * B * A < C D B C D A B

Proof

Step Hyp Ref Expression
1 df-ioo . = a * , b * x * | a < x x < b
2 df-ico . = a * , b * x * | a x x < b
3 xrltletr A * C * w * A < C C w A < w
4 xrltletr w * D * B * w < D D B w < B
5 1 2 3 4 ixxss12 A * B * A < C D B C D A B