Metamath Proof Explorer


Theorem icoub

Description: A left-closed, right-open interval does not contain its upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion icoub A * ¬ B A B

Proof

Step Hyp Ref Expression
1 simpl A * B A B A *
2 icossxr A B *
3 id B A B B A B
4 2 3 sselid B A B B *
5 4 adantl A * B A B B *
6 simpr A * B A B B A B
7 icoltub A * B * B A B B < B
8 1 5 6 7 syl3anc A * B A B B < B
9 xrltnr B * ¬ B < B
10 4 9 syl B A B ¬ B < B
11 10 adantl A * B A B ¬ B < B
12 8 11 pm2.65da A * ¬ B A B