Metamath Proof Explorer


Theorem icoun

Description: The union of two adjacent left-closed right-open real intervals is a left-closed right-open real interval. (Contributed by Paul Chapman, 15-Mar-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion icoun A * B * C * A B B C A B B C = A C

Proof

Step Hyp Ref Expression
1 df-ico . = x * , y * z * | x z z < y
2 xrlenlt B * w * B w ¬ w < B
3 xrltletr w * B * C * w < B B C w < C
4 xrletr A * B * w * A B B w A w
5 1 1 2 1 3 4 ixxun A * B * C * A B B C A B B C = A C