Metamath Proof Explorer


Theorem idcn

Description: A restricted identity function is a continuous function. (Contributed by FL, 27-Dec-2006) (Proof shortened by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion idcn J TopOn X I X J Cn J

Proof

Step Hyp Ref Expression
1 ssid J J
2 ssidcn J TopOn X J TopOn X I X J Cn J J J
3 2 anidms J TopOn X I X J Cn J J J
4 1 3 mpbiri J TopOn X I X J Cn J