Metamath Proof Explorer


Theorem idcncfg

Description: The identity function is a continuous function on CC . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses idcncfg.a φ A B
idcncfg.b φ B
Assertion idcncfg φ x A x : A cn B

Proof

Step Hyp Ref Expression
1 idcncfg.a φ A B
2 idcncfg.b φ B
3 cncfmptid A B B x A x : A cn B
4 1 2 3 syl2anc φ x A x : A cn B