Metamath Proof Explorer


Theorem idcnop

Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion idcnop I ContOp

Proof

Step Hyp Ref Expression
1 f1oi I : 1-1 onto
2 f1of I : 1-1 onto I :
3 1 2 ax-mp I :
4 id y + y +
5 fvresi w I w = w
6 fvresi x I x = x
7 5 6 oveqan12rd x w I w - I x = w - x
8 7 fveq2d x w norm I w - I x = norm w - x
9 8 breq1d x w norm I w - I x < y norm w - x < y
10 9 biimprd x w norm w - x < y norm I w - I x < y
11 10 ralrimiva x w norm w - x < y norm I w - I x < y
12 breq2 z = y norm w - x < z norm w - x < y
13 12 rspceaimv y + w norm w - x < y norm I w - I x < y z + w norm w - x < z norm I w - I x < y
14 4 11 13 syl2anr x y + z + w norm w - x < z norm I w - I x < y
15 14 rgen2 x y + z + w norm w - x < z norm I w - I x < y
16 elcnop I ContOp I : x y + z + w norm w - x < z norm I w - I x < y
17 3 15 16 mpbir2an I ContOp