Metamath Proof Explorer


Theorem iddvdsexp

Description: An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012)

Ref Expression
Assertion iddvdsexp M N M M N

Proof

Step Hyp Ref Expression
1 nnm1nn0 N N 1 0
2 zexpcl M N 1 0 M N 1
3 1 2 sylan2 M N M N 1
4 simpl M N M
5 dvdsmul2 M N 1 M M M N 1 M
6 3 4 5 syl2anc M N M M N 1 M
7 zcn M M
8 expm1t M N M N = M N 1 M
9 7 8 sylan M N M N = M N 1 M
10 6 9 breqtrrd M N M M N