Description: The identity functor is a fully faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idffth.i | |
|
| Assertion | idffth | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idffth.i | |
|
| 2 | relfunc | |
|
| 3 | 1 | idfucl | |
| 4 | 1st2nd | |
|
| 5 | 2 3 4 | sylancr | |
| 6 | 5 3 | eqeltrrd | |
| 7 | df-br | |
|
| 8 | 6 7 | sylibr | |
| 9 | f1oi | |
|
| 10 | eqid | |
|
| 11 | simpl | |
|
| 12 | eqid | |
|
| 13 | simprl | |
|
| 14 | simprr | |
|
| 15 | 1 10 11 12 13 14 | idfu2nd | |
| 16 | eqidd | |
|
| 17 | 1 10 11 13 | idfu1 | |
| 18 | 1 10 11 14 | idfu1 | |
| 19 | 17 18 | oveq12d | |
| 20 | 15 16 19 | f1oeq123d | |
| 21 | 9 20 | mpbiri | |
| 22 | 21 | ralrimivva | |
| 23 | 10 12 12 | isffth2 | |
| 24 | 8 22 23 | sylanbrc | |
| 25 | df-br | |
|
| 26 | 24 25 | sylib | |
| 27 | 5 26 | eqeltrd | |