Metamath Proof Explorer


Theorem idfu1

Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses idfuval.i I = id func C
idfuval.b B = Base C
idfuval.c φ C Cat
idfu1.x φ X B
Assertion idfu1 φ 1 st I X = X

Proof

Step Hyp Ref Expression
1 idfuval.i I = id func C
2 idfuval.b B = Base C
3 idfuval.c φ C Cat
4 idfu1.x φ X B
5 1 2 3 idfu1st φ 1 st I = I B
6 5 fveq1d φ 1 st I X = I B X
7 fvresi X B I B X = X
8 4 7 syl φ I B X = X
9 6 8 eqtrd φ 1 st I X = X