Metamath Proof Explorer


Theorem idfu1st

Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses idfuval.i I = id func C
idfuval.b B = Base C
idfuval.c φ C Cat
Assertion idfu1st φ 1 st I = I B

Proof

Step Hyp Ref Expression
1 idfuval.i I = id func C
2 idfuval.b B = Base C
3 idfuval.c φ C Cat
4 eqid Hom C = Hom C
5 1 2 3 4 idfuval φ I = I B z B × B I Hom C z
6 5 fveq2d φ 1 st I = 1 st I B z B × B I Hom C z
7 2 fvexi B V
8 resiexg B V I B V
9 7 8 ax-mp I B V
10 7 7 xpex B × B V
11 10 mptex z B × B I Hom C z V
12 9 11 op1st 1 st I B z B × B I Hom C z = I B
13 6 12 eqtrdi φ 1 st I = I B