Metamath Proof Explorer


Theorem idfuval

Description: Value of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses idfuval.i I = id func C
idfuval.b B = Base C
idfuval.c φ C Cat
idfuval.h H = Hom C
Assertion idfuval φ I = I B z B × B I H z

Proof

Step Hyp Ref Expression
1 idfuval.i I = id func C
2 idfuval.b B = Base C
3 idfuval.c φ C Cat
4 idfuval.h H = Hom C
5 fvexd c = C Base c V
6 fveq2 c = C Base c = Base C
7 6 2 eqtr4di c = C Base c = B
8 simpr c = C b = B b = B
9 8 reseq2d c = C b = B I b = I B
10 8 sqxpeqd c = C b = B b × b = B × B
11 simpl c = C b = B c = C
12 11 fveq2d c = C b = B Hom c = Hom C
13 12 4 eqtr4di c = C b = B Hom c = H
14 13 fveq1d c = C b = B Hom c z = H z
15 14 reseq2d c = C b = B I Hom c z = I H z
16 10 15 mpteq12dv c = C b = B z b × b I Hom c z = z B × B I H z
17 9 16 opeq12d c = C b = B I b z b × b I Hom c z = I B z B × B I H z
18 5 7 17 csbied2 c = C Base c / b I b z b × b I Hom c z = I B z B × B I H z
19 df-idfu id func = c Cat Base c / b I b z b × b I Hom c z
20 opex I B z B × B I H z V
21 18 19 20 fvmpt C Cat id func C = I B z B × B I H z
22 3 21 syl φ id func C = I B z B × B I H z
23 1 22 eqtrid φ I = I B z B × B I H z