Metamath Proof Explorer


Theorem idinv

Description: The inverse of the identity is the identity. Example 3.13 of Adamek p. 28. (Contributed by AV, 9-Apr-2020)

Ref Expression
Hypotheses invid.b B = Base C
invid.i I = Id C
invid.c φ C Cat
invid.x φ X B
Assertion idinv φ X Inv C X I X = I X

Proof

Step Hyp Ref Expression
1 invid.b B = Base C
2 invid.i I = Id C
3 invid.c φ C Cat
4 invid.x φ X B
5 eqid Inv C = Inv C
6 1 5 3 4 4 invfun φ Fun X Inv C X
7 1 2 3 4 invid φ I X X Inv C X I X
8 funbrfv Fun X Inv C X I X X Inv C X I X X Inv C X I X = I X
9 6 7 8 sylc φ X Inv C X I X = I X