Metamath Proof Explorer


Theorem idldil

Description: The identity function is a lattice dilation. (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses idldil.b B = Base K
idldil.h H = LHyp K
idldil.d D = LDil K W
Assertion idldil K A W H I B D

Proof

Step Hyp Ref Expression
1 idldil.b B = Base K
2 idldil.h H = LHyp K
3 idldil.d D = LDil K W
4 eqid LAut K = LAut K
5 1 4 idlaut K A I B LAut K
6 5 adantr K A W H I B LAut K
7 fvresi x B I B x = x
8 7 a1d x B x K W I B x = x
9 8 rgen x B x K W I B x = x
10 9 a1i K A W H x B x K W I B x = x
11 eqid K = K
12 1 11 2 4 3 isldil K A W H I B D I B LAut K x B x K W I B x = x
13 6 10 12 mpbir2and K A W H I B D