Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
idldil
Next ⟩
ldilcnv
Metamath Proof Explorer
Ascii
Unicode
Theorem
idldil
Description:
The identity function is a lattice dilation.
(Contributed by
NM
, 18-May-2012)
Ref
Expression
Hypotheses
idldil.b
⊢
B
=
Base
K
idldil.h
⊢
H
=
LHyp
⁡
K
idldil.d
⊢
D
=
LDil
⁡
K
⁡
W
Assertion
idldil
⊢
K
∈
A
∧
W
∈
H
→
I
↾
B
∈
D
Proof
Step
Hyp
Ref
Expression
1
idldil.b
⊢
B
=
Base
K
2
idldil.h
⊢
H
=
LHyp
⁡
K
3
idldil.d
⊢
D
=
LDil
⁡
K
⁡
W
4
eqid
⊢
LAut
⁡
K
=
LAut
⁡
K
5
1
4
idlaut
⊢
K
∈
A
→
I
↾
B
∈
LAut
⁡
K
6
5
adantr
⊢
K
∈
A
∧
W
∈
H
→
I
↾
B
∈
LAut
⁡
K
7
fvresi
⊢
x
∈
B
→
I
↾
B
⁡
x
=
x
8
7
a1d
⊢
x
∈
B
→
x
≤
K
W
→
I
↾
B
⁡
x
=
x
9
8
rgen
⊢
∀
x
∈
B
x
≤
K
W
→
I
↾
B
⁡
x
=
x
10
9
a1i
⊢
K
∈
A
∧
W
∈
H
→
∀
x
∈
B
x
≤
K
W
→
I
↾
B
⁡
x
=
x
11
eqid
⊢
≤
K
=
≤
K
12
1
11
2
4
3
isldil
⊢
K
∈
A
∧
W
∈
H
→
I
↾
B
∈
D
↔
I
↾
B
∈
LAut
⁡
K
∧
∀
x
∈
B
x
≤
K
W
→
I
↾
B
⁡
x
=
x
13
6
10
12
mpbir2and
⊢
K
∈
A
∧
W
∈
H
→
I
↾
B
∈
D