Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Homomorphisms and isomorphisms of left modules
idlmhm
Next ⟩
invlmhm
Metamath Proof Explorer
Ascii
Unicode
Theorem
idlmhm
Description:
The identity function on a module is linear.
(Contributed by
Stefan O'Rear
, 4-Sep-2015)
Ref
Expression
Hypothesis
idlmhm.b
⊢
B
=
Base
M
Assertion
idlmhm
⊢
M
∈
LMod
→
I
↾
B
∈
M
LMHom
M
Proof
Step
Hyp
Ref
Expression
1
idlmhm.b
⊢
B
=
Base
M
2
eqid
⊢
⋅
M
=
⋅
M
3
eqid
⊢
Scalar
⁡
M
=
Scalar
⁡
M
4
eqid
⊢
Base
Scalar
⁡
M
=
Base
Scalar
⁡
M
5
id
⊢
M
∈
LMod
→
M
∈
LMod
6
eqidd
⊢
M
∈
LMod
→
Scalar
⁡
M
=
Scalar
⁡
M
7
lmodgrp
⊢
M
∈
LMod
→
M
∈
Grp
8
1
idghm
⊢
M
∈
Grp
→
I
↾
B
∈
M
GrpHom
M
9
7
8
syl
⊢
M
∈
LMod
→
I
↾
B
∈
M
GrpHom
M
10
1
3
2
4
lmodvscl
⊢
M
∈
LMod
∧
x
∈
Base
Scalar
⁡
M
∧
y
∈
B
→
x
⋅
M
y
∈
B
11
10
3expb
⊢
M
∈
LMod
∧
x
∈
Base
Scalar
⁡
M
∧
y
∈
B
→
x
⋅
M
y
∈
B
12
fvresi
⊢
x
⋅
M
y
∈
B
→
I
↾
B
⁡
x
⋅
M
y
=
x
⋅
M
y
13
11
12
syl
⊢
M
∈
LMod
∧
x
∈
Base
Scalar
⁡
M
∧
y
∈
B
→
I
↾
B
⁡
x
⋅
M
y
=
x
⋅
M
y
14
fvresi
⊢
y
∈
B
→
I
↾
B
⁡
y
=
y
15
14
ad2antll
⊢
M
∈
LMod
∧
x
∈
Base
Scalar
⁡
M
∧
y
∈
B
→
I
↾
B
⁡
y
=
y
16
15
oveq2d
⊢
M
∈
LMod
∧
x
∈
Base
Scalar
⁡
M
∧
y
∈
B
→
x
⋅
M
I
↾
B
⁡
y
=
x
⋅
M
y
17
13
16
eqtr4d
⊢
M
∈
LMod
∧
x
∈
Base
Scalar
⁡
M
∧
y
∈
B
→
I
↾
B
⁡
x
⋅
M
y
=
x
⋅
M
I
↾
B
⁡
y
18
1
2
2
3
3
4
5
5
6
9
17
islmhmd
⊢
M
∈
LMod
→
I
↾
B
∈
M
LMHom
M