Metamath Proof Explorer


Theorem idlmhm

Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypothesis idlmhm.b B = Base M
Assertion idlmhm M LMod I B M LMHom M

Proof

Step Hyp Ref Expression
1 idlmhm.b B = Base M
2 eqid M = M
3 eqid Scalar M = Scalar M
4 eqid Base Scalar M = Base Scalar M
5 id M LMod M LMod
6 eqidd M LMod Scalar M = Scalar M
7 lmodgrp M LMod M Grp
8 1 idghm M Grp I B M GrpHom M
9 7 8 syl M LMod I B M GrpHom M
10 1 3 2 4 lmodvscl M LMod x Base Scalar M y B x M y B
11 10 3expb M LMod x Base Scalar M y B x M y B
12 fvresi x M y B I B x M y = x M y
13 11 12 syl M LMod x Base Scalar M y B I B x M y = x M y
14 fvresi y B I B y = y
15 14 ad2antll M LMod x Base Scalar M y B I B y = y
16 15 oveq2d M LMod x Base Scalar M y B x M I B y = x M y
17 13 16 eqtr4d M LMod x Base Scalar M y B I B x M y = x M I B y
18 1 2 2 3 3 4 5 5 6 9 17 islmhmd M LMod I B M LMHom M