Metamath Proof Explorer


Theorem idlrmulcl

Description: An ideal is closed under multiplication on the right. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idllmulcl.1 G = 1 st R
idllmulcl.2 H = 2 nd R
idllmulcl.3 X = ran G
Assertion idlrmulcl R RingOps I Idl R A I B X A H B I

Proof

Step Hyp Ref Expression
1 idllmulcl.1 G = 1 st R
2 idllmulcl.2 H = 2 nd R
3 idllmulcl.3 X = ran G
4 eqid GId G = GId G
5 1 2 3 4 isidl R RingOps I Idl R I X GId G I x I y I x G y I z X z H x I x H z I
6 5 biimpa R RingOps I Idl R I X GId G I x I y I x G y I z X z H x I x H z I
7 6 simp3d R RingOps I Idl R x I y I x G y I z X z H x I x H z I
8 simpr z H x I x H z I x H z I
9 8 ralimi z X z H x I x H z I z X x H z I
10 9 adantl y I x G y I z X z H x I x H z I z X x H z I
11 10 ralimi x I y I x G y I z X z H x I x H z I x I z X x H z I
12 7 11 syl R RingOps I Idl R x I z X x H z I
13 oveq1 x = A x H z = A H z
14 13 eleq1d x = A x H z I A H z I
15 oveq2 z = B A H z = A H B
16 15 eleq1d z = B A H z I A H B I
17 14 16 rspc2v A I B X x I z X x H z I A H B I
18 12 17 mpan9 R RingOps I Idl R A I B X A H B I