| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idltrn.b |
|
| 2 |
|
idltrn.h |
|
| 3 |
|
idltrn.t |
|
| 4 |
|
eqid |
|
| 5 |
1 2 4
|
idldil |
|
| 6 |
|
simpll |
|
| 7 |
|
simplrr |
|
| 8 |
|
simprr |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
9 10 11 12 2
|
lhpmat |
|
| 14 |
6 7 8 13
|
syl12anc |
|
| 15 |
1 12
|
atbase |
|
| 16 |
|
fvresi |
|
| 17 |
7 15 16
|
3syl |
|
| 18 |
17
|
oveq2d |
|
| 19 |
|
simplll |
|
| 20 |
|
eqid |
|
| 21 |
20 12
|
hlatjidm |
|
| 22 |
19 7 21
|
syl2anc |
|
| 23 |
18 22
|
eqtrd |
|
| 24 |
23
|
oveq1d |
|
| 25 |
|
simplrl |
|
| 26 |
1 12
|
atbase |
|
| 27 |
|
fvresi |
|
| 28 |
25 26 27
|
3syl |
|
| 29 |
28
|
oveq2d |
|
| 30 |
20 12
|
hlatjidm |
|
| 31 |
19 25 30
|
syl2anc |
|
| 32 |
29 31
|
eqtrd |
|
| 33 |
32
|
oveq1d |
|
| 34 |
|
simprl |
|
| 35 |
9 10 11 12 2
|
lhpmat |
|
| 36 |
6 25 34 35
|
syl12anc |
|
| 37 |
33 36
|
eqtrd |
|
| 38 |
14 24 37
|
3eqtr4rd |
|
| 39 |
38
|
ex |
|
| 40 |
39
|
ralrimivva |
|
| 41 |
9 20 10 12 2 4 3
|
isltrn |
|
| 42 |
5 40 41
|
mpbir2and |
|