Metamath Proof Explorer


Theorem idltrn

Description: The identity function is a lattice translation. Remark below Lemma B in Crawley p. 112. (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses idltrn.b B = Base K
idltrn.h H = LHyp K
idltrn.t T = LTrn K W
Assertion idltrn K HL W H I B T

Proof

Step Hyp Ref Expression
1 idltrn.b B = Base K
2 idltrn.h H = LHyp K
3 idltrn.t T = LTrn K W
4 eqid LDil K W = LDil K W
5 1 2 4 idldil K HL W H I B LDil K W
6 simpll K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W K HL W H
7 simplrr K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W q Atoms K
8 simprr K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W ¬ q K W
9 eqid K = K
10 eqid meet K = meet K
11 eqid 0. K = 0. K
12 eqid Atoms K = Atoms K
13 9 10 11 12 2 lhpmat K HL W H q Atoms K ¬ q K W q meet K W = 0. K
14 6 7 8 13 syl12anc K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W q meet K W = 0. K
15 1 12 atbase q Atoms K q B
16 fvresi q B I B q = q
17 7 15 16 3syl K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W I B q = q
18 17 oveq2d K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W q join K I B q = q join K q
19 simplll K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W K HL
20 eqid join K = join K
21 20 12 hlatjidm K HL q Atoms K q join K q = q
22 19 7 21 syl2anc K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W q join K q = q
23 18 22 eqtrd K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W q join K I B q = q
24 23 oveq1d K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W q join K I B q meet K W = q meet K W
25 simplrl K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W p Atoms K
26 1 12 atbase p Atoms K p B
27 fvresi p B I B p = p
28 25 26 27 3syl K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W I B p = p
29 28 oveq2d K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W p join K I B p = p join K p
30 20 12 hlatjidm K HL p Atoms K p join K p = p
31 19 25 30 syl2anc K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W p join K p = p
32 29 31 eqtrd K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W p join K I B p = p
33 32 oveq1d K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W p join K I B p meet K W = p meet K W
34 simprl K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W ¬ p K W
35 9 10 11 12 2 lhpmat K HL W H p Atoms K ¬ p K W p meet K W = 0. K
36 6 25 34 35 syl12anc K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W p meet K W = 0. K
37 33 36 eqtrd K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W p join K I B p meet K W = 0. K
38 14 24 37 3eqtr4rd K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W p join K I B p meet K W = q join K I B q meet K W
39 38 ex K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W p join K I B p meet K W = q join K I B q meet K W
40 39 ralrimivva K HL W H p Atoms K q Atoms K ¬ p K W ¬ q K W p join K I B p meet K W = q join K I B q meet K W
41 9 20 10 12 2 4 3 isltrn K HL W H I B T I B LDil K W p Atoms K q Atoms K ¬ p K W ¬ q K W p join K I B p meet K W = q join K I B q meet K W
42 5 40 41 mpbir2and K HL W H I B T