Step |
Hyp |
Ref |
Expression |
1 |
|
idltrn.b |
|
2 |
|
idltrn.h |
|
3 |
|
idltrn.t |
|
4 |
|
eqid |
|
5 |
1 2 4
|
idldil |
|
6 |
|
simpll |
|
7 |
|
simplrr |
|
8 |
|
simprr |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
9 10 11 12 2
|
lhpmat |
|
14 |
6 7 8 13
|
syl12anc |
|
15 |
1 12
|
atbase |
|
16 |
|
fvresi |
|
17 |
7 15 16
|
3syl |
|
18 |
17
|
oveq2d |
|
19 |
|
simplll |
|
20 |
|
eqid |
|
21 |
20 12
|
hlatjidm |
|
22 |
19 7 21
|
syl2anc |
|
23 |
18 22
|
eqtrd |
|
24 |
23
|
oveq1d |
|
25 |
|
simplrl |
|
26 |
1 12
|
atbase |
|
27 |
|
fvresi |
|
28 |
25 26 27
|
3syl |
|
29 |
28
|
oveq2d |
|
30 |
20 12
|
hlatjidm |
|
31 |
19 25 30
|
syl2anc |
|
32 |
29 31
|
eqtrd |
|
33 |
32
|
oveq1d |
|
34 |
|
simprl |
|
35 |
9 10 11 12 2
|
lhpmat |
|
36 |
6 25 34 35
|
syl12anc |
|
37 |
33 36
|
eqtrd |
|
38 |
14 24 37
|
3eqtr4rd |
|
39 |
38
|
ex |
|
40 |
39
|
ralrimivva |
|
41 |
9 20 10 12 2 4 3
|
isltrn |
|
42 |
5 40 41
|
mpbir2and |
|