Metamath Proof Explorer


Theorem idmatidpmat

Description: The transformed identity matrix is the identity polynomial matrix. (Contributed by AV, 1-Aug-2019) (Proof shortened by AV, 19-Nov-2019)

Ref Expression
Hypotheses idmatidpmat.t T = N matToPolyMat R
idmatidpmat.p P = Poly 1 R
idmatidpmat.1 1 ˙ = 1 N Mat R
idmatidpmat.i I = 1 N Mat P
Assertion idmatidpmat R Ring N Fin T 1 ˙ = I

Proof

Step Hyp Ref Expression
1 idmatidpmat.t T = N matToPolyMat R
2 idmatidpmat.p P = Poly 1 R
3 idmatidpmat.1 1 ˙ = 1 N Mat R
4 idmatidpmat.i I = 1 N Mat P
5 eqid N Mat R = N Mat R
6 eqid Base N Mat R = Base N Mat R
7 eqid N Mat P = N Mat P
8 eqid Base N Mat P = Base N Mat P
9 1 5 6 2 7 8 mat2pmat1 N Fin R Ring T 1 N Mat R = 1 N Mat P
10 3 fveq2i T 1 ˙ = T 1 N Mat R
11 9 10 4 3eqtr4g N Fin R Ring T 1 ˙ = I
12 11 ancoms R Ring N Fin T 1 ˙ = I