Metamath Proof Explorer


Theorem idmhm

Description: The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypothesis idmhm.b B = Base M
Assertion idmhm M Mnd I B M MndHom M

Proof

Step Hyp Ref Expression
1 idmhm.b B = Base M
2 id M Mnd M Mnd
3 f1oi I B : B 1-1 onto B
4 f1of I B : B 1-1 onto B I B : B B
5 3 4 mp1i M Mnd I B : B B
6 eqid + M = + M
7 1 6 mndcl M Mnd a B b B a + M b B
8 7 3expb M Mnd a B b B a + M b B
9 fvresi a + M b B I B a + M b = a + M b
10 8 9 syl M Mnd a B b B I B a + M b = a + M b
11 fvresi a B I B a = a
12 fvresi b B I B b = b
13 11 12 oveqan12d a B b B I B a + M I B b = a + M b
14 13 adantl M Mnd a B b B I B a + M I B b = a + M b
15 10 14 eqtr4d M Mnd a B b B I B a + M b = I B a + M I B b
16 15 ralrimivva M Mnd a B b B I B a + M b = I B a + M I B b
17 eqid 0 M = 0 M
18 1 17 mndidcl M Mnd 0 M B
19 fvresi 0 M B I B 0 M = 0 M
20 18 19 syl M Mnd I B 0 M = 0 M
21 5 16 20 3jca M Mnd I B : B B a B b B I B a + M b = I B a + M I B b I B 0 M = 0 M
22 1 1 6 6 17 17 ismhm I B M MndHom M M Mnd M Mnd I B : B B a B b B I B a + M b = I B a + M I B b I B 0 M = 0 M
23 2 2 21 22 syl21anbrc M Mnd I B M MndHom M