Metamath Proof Explorer


Theorem idmot

Description: The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses ismot.p P = Base G
ismot.m - ˙ = dist G
motgrp.1 φ G V
Assertion idmot φ I P G Ismt G

Proof

Step Hyp Ref Expression
1 ismot.p P = Base G
2 ismot.m - ˙ = dist G
3 motgrp.1 φ G V
4 f1oi I P : P 1-1 onto P
5 4 a1i φ I P : P 1-1 onto P
6 fvresi a P I P a = a
7 6 ad2antrl φ a P b P I P a = a
8 fvresi b P I P b = b
9 8 ad2antll φ a P b P I P b = b
10 7 9 oveq12d φ a P b P I P a - ˙ I P b = a - ˙ b
11 10 ralrimivva φ a P b P I P a - ˙ I P b = a - ˙ b
12 1 2 ismot G V I P G Ismt G I P : P 1-1 onto P a P b P I P a - ˙ I P b = a - ˙ b
13 12 biimpar G V I P : P 1-1 onto P a P b P I P a - ˙ I P b = a - ˙ b I P G Ismt G
14 3 5 11 13 syl12anc φ I P G Ismt G