Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Motions
idmot
Next ⟩
motf1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
idmot
Description:
The identity is a motion.
(Contributed by
Thierry Arnoux
, 15-Dec-2019)
Ref
Expression
Hypotheses
ismot.p
⊢
P
=
Base
G
ismot.m
⊢
-
˙
=
dist
⁡
G
motgrp.1
⊢
φ
→
G
∈
V
Assertion
idmot
⊢
φ
→
I
↾
P
∈
G
Ismt
G
Proof
Step
Hyp
Ref
Expression
1
ismot.p
⊢
P
=
Base
G
2
ismot.m
⊢
-
˙
=
dist
⁡
G
3
motgrp.1
⊢
φ
→
G
∈
V
4
f1oi
⊢
I
↾
P
:
P
⟶
1-1 onto
P
5
4
a1i
⊢
φ
→
I
↾
P
:
P
⟶
1-1 onto
P
6
fvresi
⊢
a
∈
P
→
I
↾
P
⁡
a
=
a
7
6
ad2antrl
⊢
φ
∧
a
∈
P
∧
b
∈
P
→
I
↾
P
⁡
a
=
a
8
fvresi
⊢
b
∈
P
→
I
↾
P
⁡
b
=
b
9
8
ad2antll
⊢
φ
∧
a
∈
P
∧
b
∈
P
→
I
↾
P
⁡
b
=
b
10
7
9
oveq12d
⊢
φ
∧
a
∈
P
∧
b
∈
P
→
I
↾
P
⁡
a
-
˙
I
↾
P
⁡
b
=
a
-
˙
b
11
10
ralrimivva
⊢
φ
→
∀
a
∈
P
∀
b
∈
P
I
↾
P
⁡
a
-
˙
I
↾
P
⁡
b
=
a
-
˙
b
12
1
2
ismot
⊢
G
∈
V
→
I
↾
P
∈
G
Ismt
G
↔
I
↾
P
:
P
⟶
1-1 onto
P
∧
∀
a
∈
P
∀
b
∈
P
I
↾
P
⁡
a
-
˙
I
↾
P
⁡
b
=
a
-
˙
b
13
12
biimpar
⊢
G
∈
V
∧
I
↾
P
:
P
⟶
1-1 onto
P
∧
∀
a
∈
P
∀
b
∈
P
I
↾
P
⁡
a
-
˙
I
↾
P
⁡
b
=
a
-
˙
b
→
I
↾
P
∈
G
Ismt
G
14
3
5
11
13
syl12anc
⊢
φ
→
I
↾
P
∈
G
Ismt
G