Metamath Proof Explorer


Theorem idnghm

Description: The identity operator is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis idnghm.2 V = Base S
Assertion idnghm S NrmGrp I V S NGHom S

Proof

Step Hyp Ref Expression
1 idnghm.2 V = Base S
2 eqid S normOp S = S normOp S
3 eqid 0 S = 0 S
4 2 1 3 nmoid S NrmGrp 0 S V S normOp S I V = 1
5 1re 1
6 4 5 eqeltrdi S NrmGrp 0 S V S normOp S I V
7 eleq2 0 S = V x 0 S x V
8 7 biimpar 0 S = V x V x 0 S
9 elsni x 0 S x = 0 S
10 8 9 syl 0 S = V x V x = 0 S
11 10 mpteq2dva 0 S = V x V x = x V 0 S
12 mptresid I V = x V x
13 fconstmpt V × 0 S = x V 0 S
14 11 12 13 3eqtr4g 0 S = V I V = V × 0 S
15 14 fveq2d 0 S = V S normOp S I V = S normOp S V × 0 S
16 2 1 3 nmo0 S NrmGrp S NrmGrp S normOp S V × 0 S = 0
17 16 anidms S NrmGrp S normOp S V × 0 S = 0
18 15 17 sylan9eqr S NrmGrp 0 S = V S normOp S I V = 0
19 0re 0
20 18 19 eqeltrdi S NrmGrp 0 S = V S normOp S I V
21 ngpgrp S NrmGrp S Grp
22 1 3 grpidcl S Grp 0 S V
23 21 22 syl S NrmGrp 0 S V
24 23 snssd S NrmGrp 0 S V
25 sspss 0 S V 0 S V 0 S = V
26 24 25 sylib S NrmGrp 0 S V 0 S = V
27 6 20 26 mpjaodan S NrmGrp S normOp S I V
28 id S NrmGrp S NrmGrp
29 1 idghm S Grp I V S GrpHom S
30 21 29 syl S NrmGrp I V S GrpHom S
31 2 isnghm2 S NrmGrp S NrmGrp I V S GrpHom S I V S NGHom S S normOp S I V
32 28 30 31 mpd3an23 S NrmGrp I V S NGHom S S normOp S I V
33 27 32 mpbird S NrmGrp I V S NGHom S