Metamath Proof Explorer


Theorem idnmhm

Description: The identity operator is a bounded linear operator. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypothesis 0nmhm.1 V = Base S
Assertion idnmhm S NrmMod I V S NMHom S

Proof

Step Hyp Ref Expression
1 0nmhm.1 V = Base S
2 id S NrmMod S NrmMod
3 nlmlmod S NrmMod S LMod
4 1 idlmhm S LMod I V S LMHom S
5 3 4 syl S NrmMod I V S LMHom S
6 nlmngp S NrmMod S NrmGrp
7 1 idnghm S NrmGrp I V S NGHom S
8 6 7 syl S NrmMod I V S NGHom S
9 5 8 jca S NrmMod I V S LMHom S I V S NGHom S
10 isnmhm I V S NMHom S S NrmMod S NrmMod I V S LMHom S I V S NGHom S
11 2 2 9 10 syl21anbrc S NrmMod I V S NMHom S