Metamath Proof Explorer


Theorem idomrcan

Description: Right-cancellation law for integral domains. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses domncan.b B = Base R
domncan.1 0 ˙ = 0 R
domncan.m · ˙ = R
domncan.x φ X B 0 ˙
domncan.y φ Y B
domncan.z φ Z B
domnrcan.r φ R IDomn
domnrcan.2 φ Y · ˙ X = Z · ˙ X
Assertion idomrcan φ Y = Z

Proof

Step Hyp Ref Expression
1 domncan.b B = Base R
2 domncan.1 0 ˙ = 0 R
3 domncan.m · ˙ = R
4 domncan.x φ X B 0 ˙
5 domncan.y φ Y B
6 domncan.z φ Z B
7 domnrcan.r φ R IDomn
8 domnrcan.2 φ Y · ˙ X = Z · ˙ X
9 7 idomdomd φ R Domn
10 df-idom IDomn = CRing Domn
11 7 10 eleqtrdi φ R CRing Domn
12 11 elin1d φ R CRing
13 4 eldifad φ X B
14 1 3 crngcom R CRing X B Y B X · ˙ Y = Y · ˙ X
15 12 13 5 14 syl3anc φ X · ˙ Y = Y · ˙ X
16 1 3 crngcom R CRing X B Z B X · ˙ Z = Z · ˙ X
17 12 13 6 16 syl3anc φ X · ˙ Z = Z · ˙ X
18 8 15 17 3eqtr4d φ X · ˙ Y = X · ˙ Z
19 1 2 3 4 5 6 9 18 domnlcan φ Y = Z