Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpval.p |
|
2 |
|
pm2mpval.c |
|
3 |
|
pm2mpval.b |
|
4 |
|
pm2mpval.m |
|
5 |
|
pm2mpval.e |
|
6 |
|
pm2mpval.x |
|
7 |
|
pm2mpval.a |
|
8 |
|
pm2mpval.q |
|
9 |
|
pm2mpval.t |
|
10 |
1 2
|
pmatring |
|
11 |
|
eqid |
|
12 |
3 11
|
ringidcl |
|
13 |
10 12
|
syl |
|
14 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
|
15 |
13 14
|
mpd3an3 |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
1 2 11 7 16 17
|
decpmatid |
|
19 |
18
|
3expa |
|
20 |
19
|
oveq1d |
|
21 |
20
|
mpteq2dva |
|
22 |
21
|
oveq2d |
|
23 |
|
ovif |
|
24 |
7
|
matring |
|
25 |
8
|
ply1sca |
|
26 |
24 25
|
syl |
|
27 |
26
|
adantr |
|
28 |
27
|
fveq2d |
|
29 |
28
|
oveq1d |
|
30 |
8
|
ply1lmod |
|
31 |
24 30
|
syl |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
8 6 32 5 33
|
ply1moncl |
|
35 |
24 34
|
sylan |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
33 36 4 37
|
lmodvs1 |
|
39 |
31 35 38
|
syl2an2r |
|
40 |
29 39
|
eqtrd |
|
41 |
27
|
fveq2d |
|
42 |
41
|
oveq1d |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
33 36 4 43 44
|
lmod0vs |
|
46 |
31 35 45
|
syl2an2r |
|
47 |
42 46
|
eqtrd |
|
48 |
40 47
|
ifeq12d |
|
49 |
23 48
|
syl5eq |
|
50 |
49
|
mpteq2dva |
|
51 |
50
|
oveq2d |
|
52 |
8
|
ply1ring |
|
53 |
|
ringmnd |
|
54 |
24 52 53
|
3syl |
|
55 |
|
nn0ex |
|
56 |
55
|
a1i |
|
57 |
|
0nn0 |
|
58 |
57
|
a1i |
|
59 |
|
eqid |
|
60 |
35
|
ralrimiva |
|
61 |
44 54 56 58 59 60
|
gsummpt1n0 |
|
62 |
|
c0ex |
|
63 |
|
csbov1g |
|
64 |
62 63
|
mp1i |
|
65 |
|
csbvarg |
|
66 |
62 65
|
mp1i |
|
67 |
66
|
oveq1d |
|
68 |
8 6 32 5
|
ply1idvr1 |
|
69 |
24 68
|
syl |
|
70 |
64 67 69
|
3eqtrd |
|
71 |
51 61 70
|
3eqtrd |
|
72 |
15 22 71
|
3eqtrd |
|