Metamath Proof Explorer


Theorem idqtop

Description: The quotient topology induced by the identity function is the original topology. (Contributed by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion idqtop J TopOn X J qTop I X = J

Proof

Step Hyp Ref Expression
1 cnvresid I X -1 = I X
2 1 imaeq1i I X -1 x = I X x
3 resiima x X I X x = x
4 3 adantl J TopOn X x X I X x = x
5 2 4 syl5eq J TopOn X x X I X -1 x = x
6 5 eleq1d J TopOn X x X I X -1 x J x J
7 6 pm5.32da J TopOn X x X I X -1 x J x X x J
8 f1oi I X : X 1-1 onto X
9 f1ofo I X : X 1-1 onto X I X : X onto X
10 8 9 mp1i J TopOn X I X : X onto X
11 elqtop3 J TopOn X I X : X onto X x J qTop I X x X I X -1 x J
12 10 11 mpdan J TopOn X x J qTop I X x X I X -1 x J
13 toponss J TopOn X x J x X
14 13 ex J TopOn X x J x X
15 14 pm4.71rd J TopOn X x J x X x J
16 7 12 15 3bitr4d J TopOn X x J qTop I X x J
17 16 eqrdv J TopOn X J qTop I X = J