Metamath Proof Explorer


Theorem idrespermg

Description: The structure with the singleton containing only the identity function restricted to a set as base set and the function composition as group operation (constructed by (structure) restricting the symmetric group to that singleton) is a permutation group (group consisting of permutations). (Contributed by AV, 17-Mar-2019)

Ref Expression
Hypotheses idressubgsymg.g G = SymGrp A
idrespermg.e E = G 𝑠 I A
Assertion idrespermg A V E Grp Base E Base G

Proof

Step Hyp Ref Expression
1 idressubgsymg.g G = SymGrp A
2 idrespermg.e E = G 𝑠 I A
3 1 idressubgsymg A V I A SubGrp G
4 eqid Base G = Base G
5 1 4 pgrpsubgsymgbi A V I A SubGrp G I A Base G G 𝑠 I A Grp
6 snex I A V
7 2 4 ressbas I A V I A Base G = Base E
8 6 7 mp1i A V I A Base G = Base E
9 inss2 I A Base G Base G
10 8 9 eqsstrrdi A V Base E Base G
11 2 eqcomi G 𝑠 I A = E
12 11 eleq1i G 𝑠 I A Grp E Grp
13 12 biimpi G 𝑠 I A Grp E Grp
14 13 adantl I A Base G G 𝑠 I A Grp E Grp
15 10 14 anim12ci A V I A Base G G 𝑠 I A Grp E Grp Base E Base G
16 15 ex A V I A Base G G 𝑠 I A Grp E Grp Base E Base G
17 5 16 sylbid A V I A SubGrp G E Grp Base E Base G
18 3 17 mpd A V E Grp Base E Base G