Metamath Proof Explorer


Theorem idressubgsymg

Description: The singleton containing only the identity function restricted to a set is a subgroup of the symmetric group of this set. (Contributed by AV, 17-Mar-2019)

Ref Expression
Hypothesis idressubgsymg.g G = SymGrp A
Assertion idressubgsymg A V I A SubGrp G

Proof

Step Hyp Ref Expression
1 idressubgsymg.g G = SymGrp A
2 1 symgid A V I A = 0 G
3 2 sneqd A V I A = 0 G
4 1 symggrp A V G Grp
5 eqid 0 G = 0 G
6 5 0subg G Grp 0 G SubGrp G
7 4 6 syl A V 0 G SubGrp G
8 3 7 eqeltrd A V I A SubGrp G