Metamath Proof Explorer


Theorem idressubgsymg

Description: The singleton containing only the identity function restricted to a set is a subgroup of the symmetric group of this set. (Contributed by AV, 17-Mar-2019)

Ref Expression
Hypothesis idressubgsymg.g G=SymGrpA
Assertion idressubgsymg AVIASubGrpG

Proof

Step Hyp Ref Expression
1 idressubgsymg.g G=SymGrpA
2 1 symgid AVIA=0G
3 2 sneqd AVIA=0G
4 1 symggrp AVGGrp
5 eqid 0G=0G
6 5 0subg GGrp0GSubGrpG
7 4 6 syl AV0GSubGrpG
8 3 7 eqeltrd AVIASubGrpG