Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring homomorphisms
idrhm
Next ⟩
rhmf1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
idrhm
Description:
The identity homomorphism on a ring.
(Contributed by
AV
, 14-Feb-2020)
Ref
Expression
Hypothesis
idrhm.b
⊢
B
=
Base
R
Assertion
idrhm
⊢
R
∈
Ring
→
I
↾
B
∈
R
RingHom
R
Proof
Step
Hyp
Ref
Expression
1
idrhm.b
⊢
B
=
Base
R
2
id
⊢
R
∈
Ring
→
R
∈
Ring
3
ringgrp
⊢
R
∈
Ring
→
R
∈
Grp
4
1
idghm
⊢
R
∈
Grp
→
I
↾
B
∈
R
GrpHom
R
5
3
4
syl
⊢
R
∈
Ring
→
I
↾
B
∈
R
GrpHom
R
6
eqid
⊢
mulGrp
R
=
mulGrp
R
7
6
ringmgp
⊢
R
∈
Ring
→
mulGrp
R
∈
Mnd
8
6
1
mgpbas
⊢
B
=
Base
mulGrp
R
9
8
idmhm
⊢
mulGrp
R
∈
Mnd
→
I
↾
B
∈
mulGrp
R
MndHom
mulGrp
R
10
7
9
syl
⊢
R
∈
Ring
→
I
↾
B
∈
mulGrp
R
MndHom
mulGrp
R
11
5
10
jca
⊢
R
∈
Ring
→
I
↾
B
∈
R
GrpHom
R
∧
I
↾
B
∈
mulGrp
R
MndHom
mulGrp
R
12
6
6
isrhm
⊢
I
↾
B
∈
R
RingHom
R
↔
R
∈
Ring
∧
R
∈
Ring
∧
I
↾
B
∈
R
GrpHom
R
∧
I
↾
B
∈
mulGrp
R
MndHom
mulGrp
R
13
2
2
11
12
syl21anbrc
⊢
R
∈
Ring
→
I
↾
B
∈
R
RingHom
R