Metamath Proof Explorer


Theorem idrhm

Description: The identity homomorphism on a ring. (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypothesis idrhm.b B = Base R
Assertion idrhm R Ring I B R RingHom R

Proof

Step Hyp Ref Expression
1 idrhm.b B = Base R
2 id R Ring R Ring
3 ringgrp R Ring R Grp
4 1 idghm R Grp I B R GrpHom R
5 3 4 syl R Ring I B R GrpHom R
6 eqid mulGrp R = mulGrp R
7 6 ringmgp R Ring mulGrp R Mnd
8 6 1 mgpbas B = Base mulGrp R
9 8 idmhm mulGrp R Mnd I B mulGrp R MndHom mulGrp R
10 7 9 syl R Ring I B mulGrp R MndHom mulGrp R
11 5 10 jca R Ring I B R GrpHom R I B mulGrp R MndHom mulGrp R
12 6 6 isrhm I B R RingHom R R Ring R Ring I B R GrpHom R I B mulGrp R MndHom mulGrp R
13 2 2 11 12 syl21anbrc R Ring I B R RingHom R