Database
BASIC ALGEBRAIC STRUCTURES
Rings
Homomorphisms of non-unital rings
idrnghm
Next ⟩
c0mgm
Metamath Proof Explorer
Ascii
Unicode
Theorem
idrnghm
Description:
The identity homomorphism on a non-unital ring.
(Contributed by
AV
, 27-Feb-2020)
Ref
Expression
Hypothesis
idrnghm.b
⊢
B
=
Base
R
Assertion
idrnghm
⊢
R
∈
Rng
→
I
↾
B
∈
R
RngHom
R
Proof
Step
Hyp
Ref
Expression
1
idrnghm.b
⊢
B
=
Base
R
2
id
⊢
R
∈
Rng
→
R
∈
Rng
3
2
2
jca
⊢
R
∈
Rng
→
R
∈
Rng
∧
R
∈
Rng
4
rngabl
⊢
R
∈
Rng
→
R
∈
Abel
5
ablgrp
⊢
R
∈
Abel
→
R
∈
Grp
6
1
idghm
⊢
R
∈
Grp
→
I
↾
B
∈
R
GrpHom
R
7
4
5
6
3syl
⊢
R
∈
Rng
→
I
↾
B
∈
R
GrpHom
R
8
eqid
⊢
mulGrp
R
=
mulGrp
R
9
8
rngmgp
⊢
R
∈
Rng
→
mulGrp
R
∈
Smgrp
10
sgrpmgm
⊢
mulGrp
R
∈
Smgrp
→
mulGrp
R
∈
Mgm
11
8
1
mgpbas
⊢
B
=
Base
mulGrp
R
12
11
idmgmhm
⊢
mulGrp
R
∈
Mgm
→
I
↾
B
∈
mulGrp
R
MgmHom
mulGrp
R
13
9
10
12
3syl
⊢
R
∈
Rng
→
I
↾
B
∈
mulGrp
R
MgmHom
mulGrp
R
14
7
13
jca
⊢
R
∈
Rng
→
I
↾
B
∈
R
GrpHom
R
∧
I
↾
B
∈
mulGrp
R
MgmHom
mulGrp
R
15
8
8
isrnghmmul
⊢
I
↾
B
∈
R
RngHom
R
↔
R
∈
Rng
∧
R
∈
Rng
∧
I
↾
B
∈
R
GrpHom
R
∧
I
↾
B
∈
mulGrp
R
MgmHom
mulGrp
R
16
3
14
15
sylanbrc
⊢
R
∈
Rng
→
I
↾
B
∈
R
RngHom
R