Metamath Proof Explorer


Theorem ids1

Description: Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion ids1 ⟨“ A ”⟩ = ⟨“ I A ”⟩

Proof

Step Hyp Ref Expression
1 fvex I A V
2 fvi I A V I I A = I A
3 1 2 ax-mp I I A = I A
4 3 opeq2i 0 I I A = 0 I A
5 4 sneqi 0 I I A = 0 I A
6 df-s1 ⟨“ I A ”⟩ = 0 I I A
7 df-s1 ⟨“ A ”⟩ = 0 I A
8 5 6 7 3eqtr4ri ⟨“ A ”⟩ = ⟨“ I A ”⟩