| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idsrngd.k |  | 
						
							| 2 |  | idsrngd.c |  | 
						
							| 3 |  | idsrngd.r |  | 
						
							| 4 |  | idsrngd.i |  | 
						
							| 5 | 1 | a1i |  | 
						
							| 6 |  | eqidd |  | 
						
							| 7 |  | eqidd |  | 
						
							| 8 | 2 | a1i |  | 
						
							| 9 |  | crngring |  | 
						
							| 10 | 3 9 | syl |  | 
						
							| 11 | 4 | ralrimiva |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 | 15 14 | eqeq12d |  | 
						
							| 17 | 13 16 | rspcdv |  | 
						
							| 18 | 12 17 | mpd |  | 
						
							| 19 | 18 13 | eqeltrd |  | 
						
							| 20 | 11 | adantr |  | 
						
							| 21 | 20 | 3adant2 |  | 
						
							| 22 |  | ringgrp |  | 
						
							| 23 | 10 22 | syl |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 1 24 | grpcl |  | 
						
							| 26 | 23 25 | syl3an1 |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 | 27 | fveq2d |  | 
						
							| 29 | 28 27 | eqeq12d |  | 
						
							| 30 | 26 29 | rspcdv |  | 
						
							| 31 | 21 30 | mpd |  | 
						
							| 32 | 18 | 3adant3 |  | 
						
							| 33 |  | simpr |  | 
						
							| 34 |  | simpr |  | 
						
							| 35 | 34 | fveq2d |  | 
						
							| 36 | 35 34 | eqeq12d |  | 
						
							| 37 | 33 36 | rspcdv |  | 
						
							| 38 | 20 37 | mpd |  | 
						
							| 39 | 38 | 3adant2 |  | 
						
							| 40 | 32 39 | oveq12d |  | 
						
							| 41 | 31 40 | eqtr4d |  | 
						
							| 42 |  | eqid |  | 
						
							| 43 | 1 42 | crngcom |  | 
						
							| 44 | 3 43 | syl3an1 |  | 
						
							| 45 | 1 42 | ringcl |  | 
						
							| 46 | 10 45 | syl3an1 |  | 
						
							| 47 |  | simpr |  | 
						
							| 48 | 47 | fveq2d |  | 
						
							| 49 | 48 47 | eqeq12d |  | 
						
							| 50 | 46 49 | rspcdv |  | 
						
							| 51 | 21 50 | mpd |  | 
						
							| 52 | 39 32 | oveq12d |  | 
						
							| 53 | 44 51 52 | 3eqtr4d |  | 
						
							| 54 | 18 | fveq2d |  | 
						
							| 55 | 54 18 | eqtrd |  | 
						
							| 56 | 5 6 7 8 10 19 41 53 55 | issrngd |  |