Step |
Hyp |
Ref |
Expression |
1 |
|
idsrngd.k |
|
2 |
|
idsrngd.c |
|
3 |
|
idsrngd.r |
|
4 |
|
idsrngd.i |
|
5 |
1
|
a1i |
|
6 |
|
eqidd |
|
7 |
|
eqidd |
|
8 |
2
|
a1i |
|
9 |
|
crngring |
|
10 |
3 9
|
syl |
|
11 |
4
|
ralrimiva |
|
12 |
11
|
adantr |
|
13 |
|
simpr |
|
14 |
|
simpr |
|
15 |
14
|
fveq2d |
|
16 |
15 14
|
eqeq12d |
|
17 |
13 16
|
rspcdv |
|
18 |
12 17
|
mpd |
|
19 |
18 13
|
eqeltrd |
|
20 |
11
|
adantr |
|
21 |
20
|
3adant2 |
|
22 |
|
ringgrp |
|
23 |
10 22
|
syl |
|
24 |
|
eqid |
|
25 |
1 24
|
grpcl |
|
26 |
23 25
|
syl3an1 |
|
27 |
|
simpr |
|
28 |
27
|
fveq2d |
|
29 |
28 27
|
eqeq12d |
|
30 |
26 29
|
rspcdv |
|
31 |
21 30
|
mpd |
|
32 |
18
|
3adant3 |
|
33 |
|
simpr |
|
34 |
|
simpr |
|
35 |
34
|
fveq2d |
|
36 |
35 34
|
eqeq12d |
|
37 |
33 36
|
rspcdv |
|
38 |
20 37
|
mpd |
|
39 |
38
|
3adant2 |
|
40 |
32 39
|
oveq12d |
|
41 |
31 40
|
eqtr4d |
|
42 |
|
eqid |
|
43 |
1 42
|
crngcom |
|
44 |
3 43
|
syl3an1 |
|
45 |
1 42
|
ringcl |
|
46 |
10 45
|
syl3an1 |
|
47 |
|
simpr |
|
48 |
47
|
fveq2d |
|
49 |
48 47
|
eqeq12d |
|
50 |
46 49
|
rspcdv |
|
51 |
21 50
|
mpd |
|
52 |
39 32
|
oveq12d |
|
53 |
44 51 52
|
3eqtr4d |
|
54 |
18
|
fveq2d |
|
55 |
54 18
|
eqtrd |
|
56 |
5 6 7 8 10 19 41 53 55
|
issrngd |
|