Metamath Proof Explorer


Theorem idssen

Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion idssen I

Proof

Step Hyp Ref Expression
1 reli Rel I
2 vex y V
3 2 ideq x I y x = y
4 eqeng x V x = y x y
5 4 elv x = y x y
6 3 5 sylbi x I y x y
7 df-br x I y x y I
8 df-br x y x y
9 6 7 8 3imtr3i x y I x y
10 1 9 relssi I