Metamath Proof Explorer


Theorem iedgedg

Description: An indexed edge is an edge. (Contributed by AV, 19-Dec-2021)

Ref Expression
Hypothesis iedgedg.e E = iEdg G
Assertion iedgedg Fun E I dom E E I Edg G

Proof

Step Hyp Ref Expression
1 iedgedg.e E = iEdg G
2 fvelrn Fun E I dom E E I ran E
3 edgval Edg G = ran iEdg G
4 1 rneqi ran E = ran iEdg G
5 3 4 eqtr4i Edg G = ran E
6 2 5 eleqtrrdi Fun E I dom E E I Edg G