Database
GRAPH THEORY
Vertices and edges
Vertices and indexed edges
Definitions and basic properties
iedgval
Next ⟩
1vgrex
Metamath Proof Explorer
Ascii
Unicode
Theorem
iedgval
Description:
The set of indexed edges of a graph.
(Contributed by
AV
, 21-Sep-2020)
Ref
Expression
Assertion
iedgval
⊢
iEdg
⁡
G
=
if
G
∈
V
×
V
2
nd
⁡
G
ef
⁡
G
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
g
=
G
→
g
∈
V
×
V
↔
G
∈
V
×
V
2
fveq2
⊢
g
=
G
→
2
nd
⁡
g
=
2
nd
⁡
G
3
fveq2
⊢
g
=
G
→
ef
⁡
g
=
ef
⁡
G
4
1
2
3
ifbieq12d
⊢
g
=
G
→
if
g
∈
V
×
V
2
nd
⁡
g
ef
⁡
g
=
if
G
∈
V
×
V
2
nd
⁡
G
ef
⁡
G
5
df-iedg
⊢
iEdg
=
g
∈
V
⟼
if
g
∈
V
×
V
2
nd
⁡
g
ef
⁡
g
6
fvex
⊢
2
nd
⁡
G
∈
V
7
fvex
⊢
ef
⁡
G
∈
V
8
6
7
ifex
⊢
if
G
∈
V
×
V
2
nd
⁡
G
ef
⁡
G
∈
V
9
4
5
8
fvmpt
⊢
G
∈
V
→
iEdg
⁡
G
=
if
G
∈
V
×
V
2
nd
⁡
G
ef
⁡
G
10
fvprc
⊢
¬
G
∈
V
→
ef
⁡
G
=
∅
11
prcnel
⊢
¬
G
∈
V
→
¬
G
∈
V
×
V
12
11
iffalsed
⊢
¬
G
∈
V
→
if
G
∈
V
×
V
2
nd
⁡
G
ef
⁡
G
=
ef
⁡
G
13
fvprc
⊢
¬
G
∈
V
→
iEdg
⁡
G
=
∅
14
10
12
13
3eqtr4rd
⊢
¬
G
∈
V
→
iEdg
⁡
G
=
if
G
∈
V
×
V
2
nd
⁡
G
ef
⁡
G
15
9
14
pm2.61i
⊢
iEdg
⁡
G
=
if
G
∈
V
×
V
2
nd
⁡
G
ef
⁡
G