Metamath Proof Explorer


Theorem iedgval

Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020)

Ref Expression
Assertion iedgval iEdg G = if G V × V 2 nd G ef G

Proof

Step Hyp Ref Expression
1 eleq1 g = G g V × V G V × V
2 fveq2 g = G 2 nd g = 2 nd G
3 fveq2 g = G ef g = ef G
4 1 2 3 ifbieq12d g = G if g V × V 2 nd g ef g = if G V × V 2 nd G ef G
5 df-iedg iEdg = g V if g V × V 2 nd g ef g
6 fvex 2 nd G V
7 fvex ef G V
8 6 7 ifex if G V × V 2 nd G ef G V
9 4 5 8 fvmpt G V iEdg G = if G V × V 2 nd G ef G
10 fvprc ¬ G V ef G =
11 prcnel ¬ G V ¬ G V × V
12 11 iffalsed ¬ G V if G V × V 2 nd G ef G = ef G
13 fvprc ¬ G V iEdg G =
14 10 12 13 3eqtr4rd ¬ G V iEdg G = if G V × V 2 nd G ef G
15 9 14 pm2.61i iEdg G = if G V × V 2 nd G ef G