Metamath Proof Explorer


Theorem ielefmnd

Description: The identity function restricted to a set A is an element of the base set of the monoid of endofunctions on A . (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypothesis ielefmnd.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
Assertion ielefmnd A V I A Base G

Proof

Step Hyp Ref Expression
1 ielefmnd.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 f1oi I A : A 1-1 onto A
3 f1of I A : A 1-1 onto A I A : A A
4 2 3 ax-mp I A : A A
5 eqid Base G = Base G
6 1 5 elefmndbas A V I A Base G I A : A A
7 4 6 mpbiri A V I A Base G